
z/OS Communications Server

CMIP Services and Topology Agent Guide

Version 1 Release 7

SC31-8828-03

���

z/OS Communications Server

CMIP Services and Topology Agent Guide

Version 1 Release 7

SC31-8828-03

���

Note:

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

375.

Fourth Edition (September 2005)

This edition applies to Version 1 Release 7 of z/OS (5694-A01) and Version 1 Release 7 of z/OS.e (5655-G52) and to

all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.

 International Business Machines Corporation

 Attn: z/OS Communications Server Information Development

 Department AKCA, Building 501

 P.O. Box 12195, 3039 Cornwallis Road

 Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):

1+919-254-4028

 Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:

comsvrcf@us.ibm.com

World Wide Web:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to

include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xi

Tables . xiii

About this document . xv

Who should read this document . xv

How this document is organized . xv

How to use this document . xvi

Determining whether a publication is current . xvi

How to contact IBM service . xvii

Conventions and terminology used in this document . xvii

Clarification of notes . xvii

Prerequisite and related information . xvii

Required information . xvii

Related information . xviii

How to send your comments . xxii

Summary of changes . xxiii

Part 1. VTAM CMIP services . 1

Chapter 1. Introduction to Object Orientation and CMIP services 3

Object-Oriented view of resources . 3

Relationship between CMIP services and local application programs 4

Relationship between CMIP services and remote management systems 5

Overview of CMIP services . 5

Locates objects . 6

Registers objects . 6

Coordinates traffic . 7

Replicates scoped requests . 7

Filters and routes events . 7

Provides security . 9

Creates and ends associations . 9

Manages associations . 9

Manages PDUs . 10

Supports all CMIP verbs and most CMIP parameters . 11

Requirements for application programs . 11

Types of application programs . 12

Basic application programs . 12

Subtree managers . 12

Create handlers . 13

Special considerations for manager application programs 13

Special considerations for topology manager application programs 14

CMIP error handling . 15

General error handling . 15

CMIP sequencing for separate CMIP operations . 17

Chapter 2. Sample CMIP application program 19

ACYCMS1C source file . 22

ACYCMS2A source file . 29

ACYCMS3A source file . 31

ACYCMS4A source file . 34

ACYCMS5A source file . 35

ACYCMS6A source file . 36

© Copyright IBM Corp. 1995, 2005 iii

ACYCMS7A source file . 38

Chapter 3. Overview of CMIP services API functions 41

Decisions to make before coding . 41

Common storage area storage or data space storage? . 41

What form of distinguished name? . 44

What type of application program—manager or agent? . 44

Requirements for CMIP application programs . 44

Format of API messages . 45

Description and example of the API header . 45

API header fields . 46

Description and example of the string . 48

Rules for the source and destination fields in the string . 50

Chapter 4. CMIP services API function syntax and operands 53

Overview of API functions . 53

How the functions are coded . 53

How the functions are described . 54

Completion information . 54

Synchronous and asychronous functions . 55

MIBConnect—MIB connection function . 56

MIBDisconnect—MIB disconnection function . 67

MIBSendCmipRequest—CMIP request function . 70

MIBSendCmipResponse—CMIP response function . 73

MIBSendDeleteRegistration—Deregistration function . 77

MIBSendRegister—MIB asynchronous registration function 79

MIBSendRequest—MIB queue request function . 83

MIBSendResponse—MIB queue response function . 85

Chapter 5. Read queue exit routine . 87

Read queue exit routine for the CSA interface . 88

VTAM reason codes (for CSA) . 88

Registers upon entry (for CSA) . 88

Registers upon termination (for CSA) . 89

Parameter list (for CSA) . 89

Read queue exit routine for data space storage . 89

VTAM reason codes (for data space) . 89

Registers upon entry (for data space) . 90

Registers upon termination (for data space) . 90

Parameter list (for data space) . 90

Chapter 6. Dequeue and release routines for data space storage 91

Format of data on data space . 91

Dequeueing a buffer with the dequeue routine . 92

Input to the dequeue routine . 92

Output for dequeue routine . 92

Releasing a buffer with the release routine . 93

Input to the release routine . 93

Output to the release routine . 93

Chapter 7. Rules for constructing standard CMIP strings 95

Overview . 95

How application programs format data to be sent to CMIP services 95

Explicit value format . 97

ASN.1 value format . 97

MIB variable format . 98

Constructed value format . 99

Hexadecimal BER format . 100

Primitive ASN.1 data types . 101

BOOLEAN type . 101

iv z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

INTEGER type . 102

ENUMERATED type . 103

REAL type . 104

BIT STRING type . 105

OCTET STRING type . 106

NULL type . 107

OBJECT IDENTIFIER type . 108

Character string types . 109

Time types . 112

Constructed ASN.1 types . 112

How CMIP services sends a constructed type to an application program 113

SEQUENCE . 113

SET . 114

SET OF and SEQUENCE OF types . 114

Decision types . 115

CHOICE types . 115

ANY DEFINED BY types . 116

ANY types . 117

Additional examples of how application programs send data 117

Chapter 8. Examples of standard CMIP strings 121

Requests and indications . 122

GET request—syntax . 122

GET request—example request string . 122

GET request—corresponding indication . 122

ACTION request—syntax . 123

ACTION request—example request string . 123

ACTION request—corresponding indication . 123

Responses and confirmations . 124

GET response—syntax . 124

GET response—example response string . 124

GET response—corresponding confirmation . 124

CREATE response—syntax . 125

CREATE response—example response string . 125

CREATE response—corresponding confirmation . 126

Chapter 9. Create and delete requests . 129

Create requests . 129

Creating the new object requested on the create request 129

Rejecting the create request . 129

Creating an object different from object on the create request 130

Delete requests . 130

Deleting the object requested on the delete request . 130

Rejecting the delete request . 130

Chapter 10. VTAM-specific requests and responses 133

Subscribing to association information . 133

Syntax for the subscription strings . 133

Examples of subscription strings . 134

How the subscription strings are used . 135

Registering an application entity . 135

Syntax of the registration strings . 136

Examples of RegisterAE strings . 136

How the registration strings are used . 136

Starting associations . 136

Syntax of the associate strings . 137

Examples of the associate strings . 137

How the associate strings are used . 137

Ending associations . 137

Syntax of the ACF.Release and ACF.Abort strings . 138

Contents v

Examples of the ACF.Release and ACF.Abort strings . 138

How the ACF.Release and ACF.Abort strings are used . 138

Getting association information . 138

Syntax of the GetAssociationInfo string . 138

Examples of the GetAssociationInfo string . 139

How the GetAssociationInfo string is used . 139

Creating a dedicated association . 140

Requests and responses with the MIB prefix . 141

MIB.GeneralRequest, MIB.GeneralResponse, and MIB.GeneralError 141

MIB.ServiceError . 141

MIB.ServiceAccept . 141

MIB.RegisterAccept . 142

Chapter 11. Application-program-to-application-program security 143

Part 2. VTAM topology agent . 147

Chapter 12. Introduction to VTAM topology agent 149

Chapter 13. OSI object classes and VTAM resources 151

OSI object classes . 151

Mapping VTAM resources to OSI object classes . 152

Naming the objects . 152

OSI object states . 155

Mapping VTAM status to OSI states . 156

OSI states for VTAM resources with VTAM status . 156

OSI states for VTAM resources without VTAM native status 158

Chapter 14. OSI operations . 159

Specifying OSI operations with CMIP verbs . 159

GET . 159

CANCEL-GET . 160

ACTION . 160

SET . 160

DELETE . 160

Other operations . 160

Responding to CMIP requests . 161

Responding to GET ROIV messages . 162

Responding to CANCEL-GET messages . 162

Responding to ACTION ROIV messages . 162

EVENT-REPORT, SET, and DELETE messages . 162

Monitoring resources with the ACTION(snapshot) operation 163

ACTION(snapshot) request . 163

ACTION(snapshot) response . 164

ACTION(snapshot) initial data . 166

ACTION(snapshot) update data . 167

ACTION(snapshot) update merging . 168

ACTION(snapshot) termination . 169

Chapter 15. VTAM topology monitoring . 171

Requesting and monitoring network data (snaNetwork) . 171

Overview . 171

Action request . 171

Initial data response . 172

Update data response . 172

Action termination . 173

snaNetwork snapshot data (APPN data) . 174

snaNetwork snapshot data (subarea data) . 175

snaNetwork snapshot example . 177

vi z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Requesting and monitoring local topology (snaLocalTopo) 183

Overview . 183

Action request . 185

Initial data response . 186

Update data response . 187

Action termination . 188

snaLocalTopo snapshot data . 190

snaLocalTopo snapshot example . 195

Requesting and monitoring LU data (luCollection) . 204

Overview . 204

Action request . 205

Initial data response . 205

Update data response . 206

Action termination . 208

luCollection snapshot data . 208

luCollection (PU) snapshot example . 209

Monitoring resources through event reports . 212

Overview . 212

Management of the event reporting environment . 213

Creation of the event forwarding discriminator . 213

Reporting events to the manager application program . 214

Event report data . 214

Event report example . 216

Chapter 16. Requesting specific resource data 219

Requesting specific resource data (GET) . 219

Overview . 219

GET request . 219

Network-qualified names and GET requests . 221

GET response . 222

GET data . 223

GET data example . 223

Requesting specific resource data (logicalUnitIndex) . 224

Overview . 224

Action request . 224

Initial data response . 225

Action termination . 226

logicalUnitIndex snapshot data . 226

logicalUnitIndex snapshot example . 227

Appendix A. C language header file (ACYAPHDH) 229

Appendix B. ASN.1 specification of the basic CMIP strings 239

Appendix C. Error codes sent by CMIP services 263

MIB.ServiceError error codes . 263

CMER VIT entry error codes . 296

Appendix D. VTAM CMIP services compliance with related standards and profiles . . 299

ISO standards documents . 299

ISO 9596-1 CMIP—Common Management Information Protocol 299

(ISO 10164-5) OSI systems management part 5: event report function 299

ISO 8650 ACSE—Association Control Service Element . 299

ISO 8823 presentation layer . 299

ISO 8825 BER—Basic Encoding Rules (BER) . 299

ISO standards documents . 300

DISP 11183-1, AOM 10 . 300

DISP 11183-3, AOM 12 . 300

AOM221—general event report management . 300

Contents vii

Appendix E. VTAM topology agent object and attribute tables 301

VTAM-supported objects for snapshot operations . 301

Naming attributes for snapshot objects . 301

VTAM-supported objects for snapshot responses . 301

VTAM-supported attributes for snapshot responses . 302

VTAM-supported objects for GET operation . 302

VTAM-supported attributes for GET operation . 302

Appendix F. VTAM topology agent attributes definition 313

abmSupported . 313

adapterAddresses . 313

adapterNumbers . 314

adjacentLinkStationAddress . 315

adjacentNodeName . 316

adjacentNodeType . 317

administrativeState . 318

allomorphs . 318

appnNodeCapabilities . 319

appnTGcapabilities . 320

attachedCircuitList . 320

availabilityStatus . 321

cdrscRealLUname . 321

connectionID . 322

connectionType . 323

cp-cpSessionSupport . 323

definitionGroupName . 323

dependencies . 324

dlcName . 325

dlurList . 326

dlurLocalLsAddress . 326

dlurName . 327

endpointForArc . 327

erList . 327

extendedAppnNodeCapabilities . 327

functionID . 328

gatewayNode . 328

gatewaySSCP . 328

interconnectedNetids . 329

limitedResource . 329

limitedResourceTimeout . 329

lineType . 330

linkName . 330

linkStationRole . 330

luGroupMembers . 331

luGroupName . 331

luGroupSize . 331

luSecondName . 331

maxBTUsize . 332

nameBinding . 332

nativeStatus . 332

nlrResidentNodePointer . 333

nnServerPointer . 334

nonLocalResourceName . 334

nonLocalResourceType . 334

objectClass . 335

opEquipmentList . 335

opNetworkName . 335

operationalState . 336

packages . 336

partnerConnection . 336

portId . 337

viii z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

proceduralStatus . 337

puName . 338

receiveWindowSize . 338

realSSCPname . 338

registeredBy . 338

relatedAdapter . 339

residentNodePointer . 339

resourceSequenceNumber . 339

routeAdditionResistance . 340

sendWindowSize . 340

snaNodeName . 340

softwareList . 341

subareaAddress . 341

subareaLimit . 341

supportedResources . 342

sysplexInfo . 342

tn3270ClientDnsName . 342

tn3270ClientIpAddress . 343

tn3270ClientPortNumber . 343

transmissionGroupNumber . 343

underlyingConnectionNames . 344

userLabel . 344

unknownStatus . 344

usageState . 345

Appendix G. VTAMTOPO filtering option reporting 347

Appendix H. Architectural specifications . 351

Appendix I. Related protocol specifications (RFCs) 353

Internet drafts . 366

Appendix J. Information APARs . 369

Information APARs for IP documents . 369

Information APARs for SNA documents . 370

Other information APARs . 370

Appendix K. Accessibility . 373

Using assistive technologies . 373

Keyboard navigation of the user interface . 373

z/OS information . 373

Notices . 375

Programming interface information . 383

Trademarks . 384

Bibliography . 387

z/OS Communications Server information . 387

z/OS Communications Server library . 387

Index . 393

Communicating Your Comments to IBM . 405

Contents ix

x z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Figures

1. Using CMIP services with the common storage area interface 42

2. Using CMIP services with the data space interface . 42

3. Format of API messages . 45

4. Defining a bit string field . 117

5. Application-program-to-application-program security 144

6. Distinguished name composed of three relative distinguished names 153

© Copyright IBM Corp. 1995, 2005 xi

xii z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Tables

 1. Destination and source fields in string headers . 49

 2. API functions: module entry point, type, and where to find more information 53

 3. VIT entries for each API function . 55

 4. Valid characters for NumericString . 110

 5. Valid characters for PrintableString . 110

 6. Valid characters for GraphicString and ISO646String 110

 7. Order and members of constructed types . 113

 8. VTAM resources mapped to OSI classes . 152

 9. Object names and shorthand distinguished names . 153

10. VTAM resource status to OSI atates . 156

11. OSI states for VTAM resources without native status 158

12. vertex1 entries for CDRM reported objects . 177

13. Resources with reason for snaLocalTopo update data 188

14. Reported resources for luCollection (host) initial data 206

15. Reported resources for luCollection (PU) initial data 206

16. Resources with reason for luCollection (host) update data 207

17. Resources with reason for luCollection (PU) update data 207

18. Attributes for luCollection (host) reported objects . 209

19. Attributes for luCollection (PU) reported objects . 209

20. Reported resources for logicalUnitIndex data . 225

21. Attributes for logicalUnitIndex reported objects . 227

22. Supported object classes for snapshot . 301

23. Naming attributes for snapshot objects . 301

24. Unique objects for snapshot response . 301

25. Unique attributes for snapshot response . 302

26. Supported object classes for GET . 302

27. CDRSC attribute table . 302

28. Definition group attribute table . 303

29. APPN end node attribute table . 303

30. Interchange node attribute table . 304

31. Low-entry networking node attribute table . 305

32. Logical link attribute table . 305

33. Logical unit attribute table . 306

34. LU group attribute table . 307

35. Migration data host node attribute table . 307

36. APPN network node attribute table . 308

37. Port attribute table . 308

38. APPN registered LU attribute table . 309

39. Type 2.1 node attribute table . 310

40. Type 4 node attribute table . 310

41. Type 5 node attribute table . 311

42. Connected switched PU report . 347

43. IP information APARs for z/OS Communications Server 369

44. SNA information APARs for z/OS Communications Server 370

45. Non-document information APARs . 370

© Copyright IBM Corp. 1995, 2005 xiii

||

||

||

||
||

xiv z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

About this document

This document describes programming concepts and CMIP API functions that help

application programmers write Common Management Information Protocol

(CMIP) application programs that use VTAM® CMIP services. The information in

this document supports both IPv6 and IPv4. Unless explicitly noted, information

describes IPv4 networking protocol. IPv6 support is qualified within the text.

This document supports z/OS.e.

Who should read this document

Use this document if you are planning to write a manager or agent application

program that uses VTAM CMIP services or the VTAM topology agent application

program.

Before using this document, you should be familiar with the basic concepts of

telecommunication, SNA, and VTAM. You should also be familiar with the

following:

v C language programming

v Object-oriented terminology

v OSI network management

You should be familiar with the information in the z/OS Communications Server:

New Function Summary. The z/OS Communications Server: New Function Summary

contains an overview of CMIP services and the VTAM topology agent, including

information about what these functions enable you to do and how to plan for

these functions. This document gives you the new and changed user interfaces that

enable you to use each function.

How this document is organized

This document contains the following parts and chapters:

v Part 1, “VTAM CMIP services,” on page 1 provides reference information you

need to write CMIP application programs. It contains the following chapters:

– Chapter 1, “Introduction to Object Orientation and CMIP services,” on page 3

– Chapter 2, “Sample CMIP application program,” on page 19

– Chapter 3, “Overview of CMIP services API functions,” on page 41

– Chapter 4, “CMIP services API function syntax and operands,” on page 53

– Chapter 5, “Read queue exit routine,” on page 87

– Chapter 6, “Dequeue and release routines for data space storage,” on page 91

– Chapter 7, “Rules for constructing standard CMIP strings,” on page 95

– Chapter 8, “Examples of standard CMIP strings,” on page 121

– Chapter 9, “Create and delete requests,” on page 129

– Chapter 10, “VTAM-specific requests and responses,” on page 133

– Chapter 11, “Application-program-to-application-program security,” on page

143
v Part 2, “VTAM topology agent,” on page 147 explains what VTAM topology

agent sends across the CMIP interface. It contains the following chapters:

© Copyright IBM Corp. 1995, 2005 xv

– Chapter 12, “Introduction to VTAM topology agent,” on page 149

– Chapter 13, “OSI object classes and VTAM resources,” on page 151

– Chapter 14, “OSI operations,” on page 159

– Chapter 15, “VTAM topology monitoring,” on page 171

– Chapter 16, “Requesting specific resource data,” on page 219
v The appendixes provide information that you might find helpful. This document

contains the following appendixes:

– Appendix A, “C language header file (ACYAPHDH),” on page 229

– Appendix B, “ASN.1 specification of the basic CMIP strings,” on page 239

– Appendix C, “Error codes sent by CMIP services,” on page 263

– Appendix D, “VTAM CMIP services compliance with related standards and

profiles,” on page 299

– Appendix E, “VTAM topology agent object and attribute tables,” on page 301

– Appendix F, “VTAM topology agent attributes definition,” on page 313

– Appendix G, “VTAMTOPO filtering option reporting,” on page 347

– Appendix J, “Information APARs,” on page 369 lists information APARs for IP

and SNA documents.

– Appendix K, “Accessibility,” on page 373 describes accessibility features to

help users with physical disabilities.

– “Notices” on page 375 contains notices and trademarks used in this

document.

– “Bibliography” on page 387 contains descriptions of the documents in the

z/OS® Communications Server library.

How to use this document

To use this document, you should be familiar with the basic concepts of

telecommunications, SNA, and VTAM.

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For

a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates

to hardcopy and softcopy are available at different times. The following

information describes how to determine if you are looking at the most current

copy of a publication:

v At the end of a publication’s order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level

is more current than one with a lower dash level. For example, in the

publication order number GC28-1747-07, the dash level 07 means that the

publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it

is possible that the softcopy publication is more current than the hardcopy

publication. Check the dates shown in the Summary of Changes. The softcopy

publication might have a more recently dated Summary of Changes than the

hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the

publication’s file name (also called the book name). The higher the number, the

more recent the publication. Also, next to the publication titles in the CD-ROM

booklet and the readme files, there is an asterisk (*) that indicates whether a

publication is new or changed.

xvi z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

How to contact IBM service

For immediate assistance, visit this Web site:

http://www.software.ibm.com/network/commserver/support/

 Most problems can be resolved at this Web site, where you can submit questions

and problem reports electronically, as well as access a variety of diagnosis

information.

For telephone assistance in problem diagnosis and resolution (in the United States

or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).

You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.

– 5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative

or your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating

Your Comments to IBM” on page 405.

Conventions and terminology used in this document

For definitions of the terms and abbreviations used in this document, you can view

the latest IBM terminology at the IBM Terminology Web site.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline

Customary way to perform a procedure; stronger request than

recommendation

Rule Something you must do; limitations on your actions

Restriction

Indicates certain conditions are not supported; limitations on a product or

facility

Requirement

Dependencies, prerequisites

Result Indicates the outcome

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications

Server library. Descriptions of those documents are listed in “z/OS

Communications Server information” on page 387, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS™, and

UNIX® System Services.

About this document xvii

http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/ibm/terminology

Related information

This section contains subsections on:

v “Softcopy information”

v “Other documents”

v “Redbooks” on page xix

v “Where to find related information on the Internet” on page xx

v “Using LookAt to look up message explanations” on page xxi

v “Using IBM Health Checker for z/OS” on page xxii

Softcopy information

Softcopy publications are available in the following collections:

 Titles Order

Number

Description

z/OS V1R7 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes

the libraries for z/OS V1R7, in both BookManager and PDF

formats.

z/OS Software Products

Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the

libraries of z/OS software products that run on z/OS but are not

elements and features, as well as the Getting Started with Parallel

Sysplex® bookshelf.

z/OS V1R7 and Software

Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and

feature libraries) and the libraries for z/OS software products in

both BookManager and PDF format. This collection combines

SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and

PDF format.

System Center Publication IBM

S/390® Redbooks™ Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the

S/390 platform and to host networking arranged into subject

bookshelves.

Other documents

For information about z/OS products, refer to z/OS Information Roadmap

(SA22-7500). The Roadmap describes what level of documents are supplied with

each release of z/OS Communications Server, as well as describing each z/OS

publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural

specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

 Title Number

DNS and BIND, Fourth Edition, O’Reilly and Associates, 2001 ISBN 0-596-00158-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995) ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O’Reilly and Associates, 2002 ISBN 1-56592-839-3

SNA Formats GA27-3136

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley

Publishing, 1994

ISBN 0-201-63346-9

xviii z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Title Number

TCP/IP Illustrated, Volume II: The Implementation, Gary R. Wright and W. Richard

Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume III, W. Richard Stevens, Addison-Wesley Publishing, 1995 ISBN 0-201-63495-3

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Service System Secure Sockets Layer Programming SC24-5901

z/OS Integrated Security Services Firewall Technologies SC24-5922

z/OS Integrated Security Services LDAP Client Programming SC24-5924

z/OS Integrated Security Services LDAP Server Administration and Use SC24-5923

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS Program Directory GI10-0670

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services Planning GA22-7800

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services User’s Guide SA22-7801

z/OS XL C/C++ Run-Time Library Reference SA22-7821

zSeries OSA-Express Customer’s Guide and Reference SA22-7935

Redbooks

The following Redbooks might help you as you implement z/OS Communications

Server.

 Title Number

Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 1: Base and

TN3270 Configuration

SG24-5227

Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 2: UNIX

Applications

SG24-5228

Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 4:

Connectivity and Routing

SG24-6516

Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 7: Security SG24-6840

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390® TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure SG24-5957

OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide: Volume 3:

MVS Applications

SG24-5229

Secureway Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

About this document xix

|
|
|

|
|
|

|
|
|

||

|
|
|

Title Number

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

 This site provides information about z/OS Communications Server release

availability, migration information, downloads, and links to information

about z/OS technology

 http://www.ibm.com/servers/eserver/zseries/zos/

z/OS Internet Library

 Use this site to view and download z/OS Communications Server

documentation

 http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

IBM Communications Server product

 The primary home page for information about z/OS Communications

Server

 http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

 Use this site to submit and track problems and search the z/OS

Communications Server knowledge base for Technotes, FAQs, white

papers, and other z/OS Communications Server information

 http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

 Use this site to view and order Redbooks, Redpapers, and Technotes

 http://www.redbooks.ibm.com/

IBM Systems Center flashes

 Search the Technical Sales Library for Techdocs (including Flashes,

presentations, Technotes, FAQs, white papers, Customer Support Plans,

and Skills Transfer information)

 http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

 Search for and view Request for Comments documents in this section of

the Internet Engineering Task Force Web site, with links to the RFC

repository and the IETF Working Groups Web page

 http://www.ietf.org/rfc.html

Internet drafts

 View Internet-Drafts, which are working documents of the Internet

Engineering Task Force (IETF) and other groups, in this section of the

Internet Engineering Task Force Web site

 http://www.ietf.org/ID.html

xx z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||

|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

DNS Web sites: For more information about DNS, see the following USENET

news groups and mailing addresses:

USENET news groups

comp.protocols.dns.bind

BIND mailing lists

http://www.isc.org/ml-archives/

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.

v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.

v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

Note: Any pointers in this publication to Web sites are provided for convenience

only and do not in any manner serve as an endorsement of these Web sites.

 Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message

explanations for z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for

AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX System

Services).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection (SK3T-4269), using LookAt from a

Microsoft Windows command prompt (also known as the DOS command line).

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

About this document xxi

http://www.isc.org/ml-archives/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide

checks that take advantage of the IBM Health Checker for z/OS framework. This

book may refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. z/OS V1R4, V1R5, and V1R6 users

can obtain the IBM Health Checker for z/OS from the z/OS Downloads page at

http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this document or any

other z/OS Communications Server documentation:

v Go to the z/OS contact page at:

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

There you will find the feedback page where you can enter and submit your

comments.

v Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the

name of the document, the part number of the document, the version of z/OS

Communications Server, and, if applicable, the specific location of the text you

are commenting on (for example, a section number, a page number or a table

number).

xxii z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Summary of changes

Summary of changes

for SC31-8828-03

z/OS Version 1 Release 7

 This document contains information previously presented in SC31-8828–02, which

supports z/OS Version 1 Release 5.

The information in this document includes descriptions of support for both IPv4

and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol

support concern IPv4. IPv6 support is qualified within the text.

New information

Support for model CDRSCs

v CDRSCs created from models are reported in topology but the models

themselves are not.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

You may notice changes in the style and structure of some content in this

document–for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

Summary of changes

for SC31-8828-02

z/OS Version 1 Release 5

 This document contains information previously presented in SC31-8828–01, which

supports z/OS Version 1 Release 2. The information in this document supports

both IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking

protocol. IPv6 support is qualified within the text.

New information

v luCollection data example for IPv6 address, see “luCollection (PU) snapshot

example” on page 209.

Changed information

v connectionIDs for Enterprise Extender connections (both in port objects and

logicalLink objects) include support for IPv6 addresses. See “connectionID” on

page 322.

v tn3270ClientIpAddress syntax includes support for IPv6 addresses, see

“tn3270ClientIpAddress” on page 343.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

© Copyright IBM Corp. 1995, 2005 xxiii

Starting with z/OS V1R5, you may notice changes in the style and structure of

some content in this document–for example, headings that use uppercase for the

first letter of initial words only, and procedures that have a different look and

format. The changes are ongoing improvements to the consistency and

retrievability of information in our documents.

Summary of changes

for SC31-8828-01

z/OS Version 1 Release 2

 This document contains minor editorial changes.

xxiv z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Part 1. VTAM CMIP services

© Copyright IBM Corp. 1995, 2005 1

2 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 1. Introduction to Object Orientation and CMIP

services

VTAM Common Management Information Protocol (CMIP) services provides an

open, standards-based access for network and systems management. Application

programmers can use CMIP services to code manager and agent application

programs to aid in systems management.

In pre-V4R3 releases of VTAM without CMIP, network application programs, such

as the NetView® program, are frequently limited by two restrictions:

v They rely on the VTAMLST data set for information about the location of

resources within the network.

The VTAMLST data set gives an incomplete picture of the network because

VTAMLST includes only resources that are pre-defined. It does not include

APPN or subarea resources that are dynamically defined.

v They must reside with VTAM on the host.

Because topology information cannot be gathered and sent to the NetView

program at a remote location, the NetView program must reside with VTAM on

the host.

With CMIP these two restrictions no longer apply for topology management. The

VTAM topology agent is a part of VTAM that functions as a CMIP application

program. Together with a manager application program, such as the NetView

program, the topology agent provides data for the management of APPN and

subarea topology. For a description of the VTAM topology agent, refer to

Chapter 12, “Introduction to VTAM topology agent,” on page 149. A manager

application program is any CMIP application program that sends requests to other

objects. An agent application program is any CMIP application program that

processes requests from other objects.

You can write your own manager or agent application program by using the CMIP

services application program interface (API). These application programs are not

restricted to system management, VTAM, or SNA resources. For example, you can

write an agent application program for the MVS system.

Object-Oriented view of resources

CMIP network management uses an object-oriented view of the resources in the

network to simplify management.

This object-oriented system emphasizes the common properties of resources and

reduces the requirement for a manager application program to understand all

details of every type of resource in the network. Information about different

network resources are represented by agent application programs in a common

language, composed of CMIP strings. Manager application programs use this

common language to communicate with agent application programs.

A user of a network management program issues commands to a manager

application program, which sends CMIP requests to a network resource. Resources

are represented by agent application programs, which accept the request and build

© Copyright IBM Corp. 1995, 2005 3

information about the network resource in the form of a CMIP response. The CMIP

response is returned to the manager application program.

In VTAM CMIP services, managed network resources are called objects. An object is

an instance of one or more classes. A CMIP class describes a type of resource in the

network and specifies the properties that are common to instances of the class.

A CMIP class is described in GDMO templates. These templates are sets of

declarations written in the GDMO language that describe one or more classes. The

descriptions include properties of the objects in that class, such as:

v How the object is named

v What types of requests are valid for this object

v What attributes (characteristics) describe this object

Inheritance is the mechanism used in object-oriented systems to simplify

interactions with objects by emphasizing common properties. A class can inherit

characteristics or traits from one or more other classes. To inherit means to have all

behaviors of another class. The class that inherits is a subclass of the class it

inherits from. The class that is inherited from is the superclass of the class that

inherits from it.

A subclass has all the behaviors of its superclass because it inherits from the

superclass. In addition, a subclass has unique behaviors of its own.

Relationship between CMIP services and local application programs

Local application programs are CMIP application programs that reside with CMIP

services on the host.

Local agent and manager CMIP application programs use character strings to

represent requests and responses that flow between manager application programs

and agent application programs.

The formats of CMIP requests and responses are described by syntaxes that are

written in the ASN.1 language. The ASN.1 language describes data formats.

All requests and responses sent between CMIP services and local application

programs are EBCDIC strings formatted according to string syntaxes written in the

ASN.1 language, as shown in this simple syntax example:

StringA ::= SEQUENCE

 {

 level INTEGER,

 id CHARACTER

 }

The syntax in the example is the rule for building a string of type StringA. Using

that syntax and the ASN.1 standard, an application program can build a string of

type StringA.

The following strings are examples of StringA strings:

(level 5, id ’A’)

(level 1355, id ’Z’)

(1244, M)

For more information on interpreting ASN.1 syntaxes, refer to Chapter 7, “Rules for

constructing standard CMIP strings,” on page 95.

4 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Relationship between CMIP services and remote management systems

When CMIP requests and responses flow through the network, they are encoded in

a hardware-independent format. CMIP services is available on machines with

different word sizes (16-bit and 32-bit, for example) and different character string

representations (ASCII and EBCDIC). This is hidden from application programs

and from CMIP services because CMIP services encodes data from native format to

a common format when it sends data across the network. It decodes data from the

common format to native format when it receives data from the network.

Basic Encoding Rules (BER) is the common format that is used to encode CMIP

information as it flows through the network. BER is not used between local agent

application programs and manager application programs.

Overview of CMIP services

VTAM CMIP services is designed to provide information through VTAM to

network and systems management application programs that conform to the OSI

standards for systems management. CMIP services provides application writers a

set of common functions that can be used to create CMIP agent and manager

application programs more quickly than would otherwise be possible.

The relationship between CMIP agent and manager application programs is

defined by the International Standards Organization (ISO) in terms of a managing

system and a managed system. The managing system is the CMIP manager

application program and the managed system is the CMIP agent application

program.

With the functions provided by CMIP services, application programmers can write

application programs that monitor resources in a network. Through CMIP services,

a topology agent application program sends information about resources in the

network to a topology manager application program that analyzes and displays the

resources.

The VTAM topology agent, which resides on the VTAM host, is an agent

application program that collects topology information to send to a manager

application program through CMIP services. For information about the VTAM

topology agent, refer to Chapter 12, “Introduction to VTAM topology agent,” on

page 149. Communication between the manager and agent application programs

that are on different systems is over APPC sessions using Open System

Interconnection (OSI) Common Management Information Protocol (CMIP) and

Systems Network Architecture (SNA). For more information on CMIP over SNA,

refer to IBM SystemView® Mapping of OSI Upper Layers to MDS for CMIP over SNA

for APPN and SNA Subarea Management.

CMIP services enables communication between application programs by

performing several functions for the application programs. The following sections

describe these CMIP services tasks:

v Locates objects

v Registers objects

v Coordinates traffic

v Replicates scoped requests

v Filters events and routes them to manager application programs

v Provides security

v Creates and ends associations

v Manages associations

Chapter 1. Introduction to Object Orientation and CMIP services 5

v Manages protocol data units (PDUs)

v Supports CMIP verbs and parameters

Locates objects

CMIP services allows your application program to target CMIP requests to local or

remote objects without knowing where the objects reside, what their application

entity titles are, or what their associations are. The directory resolves the object

locations. Application programs can use the same code for local objects and for

remote objects.

CMIP services maps an object instance, represented by its distinguished name, to

the application entity title of the application entity that can be used to contact that

object instance.

CMIP services performs the following tasks:

v Maps distinguished names to application entity titles by using a locally defined

directory and either of the following methods:

– Mappings (as defined by either the ACYDDF member of the SYS1.SISTCMIP

data set or a CMIP algorithm) for distinguished names of specific formats to

the application entity title that represents the distinguished name.

– User-defined mappings for distinguished names of specific formats to the

application entity title that represents the distinguished name and from

application entity title to session address. See z/OS Communications Server:

SNA Network Implementation Guide and z/OS Communications Server: SNA

Resource Definition Reference for more information about user-defined

mappings.
v Maps names to application entity titles by using a locally defined directory.

CMIP application programs can rely on CMIP services to provide this mapping.

The application programs address the objects by their distinguished names only.

Only one mapping is allowed. You cannot define more than one application entity

title for each distinguished name and cannot target more than one target system

per application entity title.

Registers objects

CMIP services supports both manager and agent application programs. Any

application program can act as both manager and agent. Each application program

must have at least one object that it registers with CMIP services.

VTAM implements an instance of a system object defined by ISO/IEC 10165-2. The

system object can be used by an application program to register subordinate

objects if the name binding defined for the subordinate objects allows this. CMIP

services provides the distinguished name of the local system object on return from

the MIBConnect function (the CMIP services connection function) so that

application programs can register subordinate objects to this system.

This distinguished name is especially useful if you are registering objects that are

in the managerApplication class. Any application program choosing not to register

under this system object can either register its own root object or can register

under any currently registered object. CMIP services does not accept registration

under non-existent managed objects. Instances can be registered under directory

objects, which are created dynamically, or they can be registered under the root

object.

6 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

The local system object is created when VTAM CMIP services is initialized and is

therefore registered so long as VTAM CMIP services is active. As a result, this

object provides a predictable, reliable anchor for creating and registering objects. It

is highly recommended that event filter discriminator (EFD) objects be created

under this system object. EFD objects are described in more detail under “Filters

and routes events” and “Special considerations for topology manager application

programs” on page 14.

CMIP services verifies proper names for object instances during object registration.

Because CMIP services is the only function that is aware of the tree structure for

naming object instances, it processes scoped requests by replicating the incoming

message for each object in the subtree specified by the scoping criteria. It does not

filter messages.

When an object with multiple name bindings registers, CMIP services assigns it the

first name binding it finds.

Coordinates traffic

CMIP services coordinates CMIP traffic within a local system. It includes an

application program interface (API) and a management information base (MIB).

The MIB includes objects. CMIP services allows the local MIB to be used by several

application programs. Each application program can implement one or more

objects that comprise the MIB. The complete MIB is made up of all of the objects

registered by the application programs. The CMIP application programs that use

the MIB are called the agents or managers for the system.

Manager application programs do not have to understand where objects are

located because VTAM directs the requests to the objects. Responses are matched

with the requests and returned to the originator.

Replicates scoped requests

Requests that affect several application programs (or objects) within a particular

scope are called scoped requests. Scoped requests are coordinated such that CMIP

services provides the appropriate end responses when the affected objects have

responded. CMIP services replicates scoped requests and directs them to the

objects within each application program that fall within the scope of the request.

Manager application programs on CMIP services can rely on CMIP services to find

the base affected objects and deliver the request to the system containing that base

object. At the receiving system, CMIP services delivers copies of the request to

each affected object, coordinates the responses, and forwards the responses.

Filters and routes events

CMIP services filters events to forward them to any manager application programs

that have indicated they want to see these events. The event reports contain

information sent by a managed object relating to an event that has occurred within

the managed object, such as a threshold violation or a change in configuration

status.

Notifications are the conceptual messages that are sent by object instances to CMIP

services. They do not have a destination initially. Notifications are specified using

the notification syntax contained in Appendix B, “ASN.1 specification of the basic

CMIP strings,” on page 239. These messages are processed by CMIP services and if

Chapter 1. Introduction to Object Orientation and CMIP services 7

there is an EFD object with a filter that matches that notification, they are

converted into event reports that contain destinations.

In the case of inbound event reports destined for OSISMASE from CMIP services

on products other than VTAM, CMIP services filters and routes event reports so

that they can be forwarded to specific objects within the local system or to remote

systems.

OSISMASE is the default application entity title for CMIP services. For

information about OSISMASE, refer to IBM SystemView Mapping of OSI Upper

Layers to MDS for CMIP over SNA for APPN and SNA Subarea Management. Inbound

event reports targeted at application entities other than OSISMASE are routed

directly to the object that registered the application entity.

VTAM CMIP services does not allow the creation of EFDs that reside in VTAM to

specify OSISMASE as a destination. CMIP services on other products might allow

OSISMASE as a destination.

Object instances do not have to be aware of destinations and filters for events

because CMIP services does that.

CMIP services receives all notifications that are either sent by local object instances

or received from other systems. CMIP services compares their attributes against

matching criteria specified in each instance of the EFD managed object. For each

EFD, if no match is found, the message is discarded. If a match is found, the

destination specified in the event forwarding discriminator is attached to the

message and it is processed further. The notification is converted to an

unconfirmed event report. If eventTime was provided in the notification, it is

copied to the event report, otherwise an eventTime is generated and included. The

event report is sent to each destination in the destination list.

For a description of how a manager application program creates EFDs, refer to

“Special considerations for topology manager application programs” on page 14.

CMIP services performs a set of functions common to all members of the EFD

object class.

It also performs the functions defined in the IBM EFD subclass for allomorphic

behavior of events. These functions are defined in IBM SystemView Managed

Resource Model Reference and Templates, Volume 1: Generic Definitions. To support this

additional behavior, each object instance that sends notifications must use the

notification syntax to include with each notification the set of allomorphic

superclasses that the object instance supports.

Confirmed event reports are not supported. When CMIP services receives a

confirmed notification or a confirmed event report, CMIP services builds an ROER

processing failure with no specific information.

EFD attributes that specify scheduling are ignored.

Objects can choose to register as individual application entities. If an application

program registers as an application entity, then any event reports destined for that

application entity are forwarded directly to that application program. Any event

reports destined for the default application entity (OSISMASE) are routed to the

local CMIP services. The creation of EFDs with a destination of OSISMASE is not

valid and might be rejected by CMIP services.

8 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

To learn about registering application entity titles, refer to “Registering an

application entity” on page 135.

Provides security

CMIP services provides two kinds of security. One kind of security is between

association partners. It verifies that association partners have proper authorization

to be in communication with each other. This kind of security defines which

manager and agent application programs can communicate with each other. The

system administrator controls this access by defining either only those partners

that are allowed to request management functions or those that are to be

specifically excluded. Wildcards and defaults can be used.

See z/OS Communications Server: SNA Network Implementation Guide and z/OS

Communications Server: SNA Resource Definition Reference for more information about

this type of security.

The other kind of security is across the API. The API security restricts access to

application program that are not authorized to act as manager application

programs or agent application programs. This security is implemented by a

password, similar to the passwords used by traditional VTAM application

programs.

For information about where the password is passed to the MIBConnect function,

refer to “MIBConnect—MIB connection function” on page 56.

Creates and ends associations

An association is a logical connection between CMIP services on this host and

CMIP services on another node or between CMIP services on this host and itself.

An association between CMIP services on this host and itself is a local association.

An association between CMIP services on this host and CMIP services on another

node is a remote association.

Creating associations

Associations can be created in two ways:

v CMIP services can establish the association when it recognizes the need for one.

v An application program can establish an association with the ACF.Associate

request, which is described under “Starting associations” on page 136.

Ending associations

An association can be ended by several methods:

v An application program can issue the ACF.Abort or ACF.Release request.

v CMIP services can end the association if it has been idle for 2 hours.

v The VTAM limited resources function (selective termination of idle LU 6.2

[APPC] sessions) sessions, can cause an association to be ended. For a

description of the effect of selective termination on associations, refer to

“Creating a dedicated association” on page 140.

Manages associations

CMIP services chooses the association across which to carry a particular message

unless the application program overrides the default association by specifying an

association on the MIBSendRequest function or the MIBSendCmipRequest function.

Chapter 1. Introduction to Object Orientation and CMIP services 9

CMIP services chooses the association based on the type of message, the

application context tied to the association, and the destination of the message.

CMIP services enforces the application context against inbound messages.

It controls the minute-by-minute operations of associations by:

v Determining the type of the message and routing it to the correct element of

CMIP services

v Maintaining the capabilities of the associations that exist

v Negotiating the capabilities of the associations

v Determining the correct association for a message

v Initiating an association for messages that are directed to object instances located

on systems with which there are no associations

v Establishing a default association for messages that are directed to object

instances on the local system

v Allowing local objects or application programs to monitor the state of

associations

v Routing incoming messages to the correct function within CMIP services

CMIP services establishes associations. When establishing associations, it negotiates

the application context to be used for that association. It ensures that the

parameters are correct.

To ensure secure associations, VTAM CMIP services checks the directory definition

file to see whether data-encryption-standard (DES)-based security or

application-program-to-application-program security is in effect.

For an overview of the security function in VTAM CMIP services, refer to

Chapter 11, “Application-program-to-application-program security,” on page 143.

See z/OS Communications Server: SNA Network Implementation Guide and z/OS

Communications Server: SNA Resource Definition Reference for a description of the

directory definition file.

Manages PDUs

As a service to local application programs, CMIP services determines whether

protocol data units (PDUs) are properly formed and exchanged in the proper

order. This service frees application programs from having to verify the PDUs

themselves.

A PDU can have several types of errors. These include:

v A value is out of the legal range for the data type. The message is rejected.

v A tag is unrecognized in a SET™ value or SEQUENCE value. The message is

rejected.

If a PDU suffers from several of these errors at one time, the most severe errors are

processed first. When the message fails to be decoded, CMIP services tries to

decode the Remote Operations Service Element (ROSE) header for the message. If

the header can be decoded, the message is rejected.

In some cases, if the header cannot be decoded, the association is ended. This

should not happen unless the message is totally destroyed.

10 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP services understands the messages that are exchanged with object instances.

It maintains the list of outstanding requests that require replies and enforces that

the CMIP strings it receives are correct.

CMIP services does not always ensure that duplicate linked-replies are not

received.

Supports all CMIP verbs and most CMIP parameters

VTAM CMIP services supports the CMIP syntaxes as documented in Appendix B,

“ASN.1 specification of the basic CMIP strings,” on page 239 with certain

exceptions. CMIP services supports all CMIP verbs:

v EVENT-REPORT

v GET

v SET

v ACTION

v CREATE

v DELETE

v CANCEL-GET

VTAM CMIP services does not support atomic synchronization. If atomic

synchronization is specified, the CMIP request is responded to with a

syncNotSupport error. VTAM CMIP services does not support the EFD scheduling

attributes.

Requirements for application programs

As described in previous sections, VTAM CMIP services provides many services

that free application programs from having to code many of the common CMIP

functions. The application program is therefore allowed to focus on functions

specific to the object instances it represents. The application program implements

the behavior of its objects. It must:

v Code an APPL definition statement to define the application program to VTAM.

See z/OS Communications Server: SNA Resource Definition Reference for information

about the APPL definition statement.

v Connect to VTAM CMIP services using the MIBConnect function. When using

the MIBConnect function, the application program must provide the address of

its read queue exit routine. The read queue exit routine is required for

application programs to communicate with CMIP services.

It is highly recommended that you code a TPEND exit routine for VTAM to

invoke when VTAM is terminating. If you code a TPEND exit routine, you must

provide its address.

v Register at least one object instance using the MIBSendRegister function. An

application program can register as many object instances as it represents. An

object instance cannot be registered by more than one application program.

v Implement the behavior of the object instances it represents. CMIP services does

not provide a repository for object attributes. Any CMIP operations targeting an

object instance are delivered to the application program that registered that

instance (or, in the case of a subtree manager, the application program that

registered the subtree containing that instance).

For example, a CMIP GET request is forwarded to the application program

representing the objects targeted in the request. Those application programs are

responsible for collecting the requested attributes, building them into the proper

response, and sending them using the MIBSendCmipResponse function.

Chapter 1. Introduction to Object Orientation and CMIP services 11

For scoped requests that affect object instances across multiple application

programs, no coordination is needed between the application programs. CMIP

services coordinates the requests for the application program. Your application

program simply indicates that it has finished its part of the response by setting

the last-in-chain attribute when invoking the MIBSendCmipResponse function.

For hints on coding subtree managers refer to “Subtree managers.” An

application program can be both a manager and an agent, but it is helpful to

separate them for the following discussion under “Types of application

programs.”

v Issue the MIBDisconnect function to disconnect the application from CMIP

services.

Types of application programs

Different types of agent application programs have different rights and

responsibilities. These types are defined by the capabilities that are requested when

an object instance is registered. These types are:

v Basic application program, with no special capabilities

v Subtree manager application program

v Create handler application program

Basic application programs

A basic application program is one that represents one or more object instances, all

of which are registered to CMIP services. The registering allows CMIP services to

provide the most service because it can scope requests to each affected instance. A

basic application program does not receive CMIP create requests to have new

instances generated, but it can create and register any number of object instances.

The trigger for creating these instances is the responsibility of the application

program and is often dictated by the resources the application program must

represent.

Subtree managers

A subtree manager is an application program that has assumed additional

responsibilities. It supports any number of instances. It is not required to register

any of them with CMIP services. It has requested and been granted ownership of a

portion of the naming tree, which includes all instances contained within it.

All scoped indications that can include a member of the subtree owned by the

subtree manager are passed to the subtree manager. It is responsible for managing

scoping within its subtree and for creating all of the responses from its instances.

The subtree manager indicates to CMIP services that it has completed the

responses from its supported instances. It cannot use the MIB variables &DN or

&OC for any of its instances that are not registered. For information about MIB

variables, refer to “MIB variable format” on page 98.

Once a subtree manager has registered itself, it establishes ownership of a subtree.

At that point, no other application program can register objects within that subtree.

Only the subtree manager can register additional objects within the subtree. For

each leaf of the subtree that the subtree manager registers, it must first register all

instances in that branch of the tree. An object cannot be registered unless its parent

has been registered. Messages to an object within the subtree are assigned the local

identifier of the subtree manager object. This is the local identifier that was

explicitly requested.

12 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

A process that registers as a subtree manager can assume responsibility for one or

more subtrees of the naming hierarchy. This capability allows the process to

register only a small number of instances. A minimum of one instance is required.

For each instance that it chooses not to register, the subtree manager must do the

global-to-local name mapping and scoping functions that are provided by CMIP

services for registered instances.

If many of the instances an application program represents are dynamic and

changing frequently, it might be preferable for the application program to act as a

subtree manager, instead of registering all of its instances. In that case, the

overhead of registering the instances makes management too expensive to be

practical.

Another example is when the application program chooses to control scoping itself.

For example, if an agent application program is to receive scoped requests for a

large number of objects, it might be better to receive a single scoped request. (A

single scoped request is one that is not replicated by CMIP services.) A single

scoped request might allow the request to be processed more efficiently internally.

Here we list one advantage and one disadvantage to registering as a subtree

manager. The advantage is that a subtree manager can avoid registering some or

all of its object instances and can control scoped operations. The disadvantage is

that a subtree manager is required to assign names within the name space it owns.

It must also ensure that the names are unique. It must perform all of the scoping

function within its name space, a requirement that makes coding the application

program more complicated.

When designing an application program, you must decide between writing

additional code to provide these functions or registering all instances.

Create handlers

A create handler is an application program that assumes additional responsibilities.

It registers to receive create messages for instances of a specific class. Registering

allows create messages to be sent to a process that is capable of handling them. For

information about the API function that registers a create handler, refer to

“MIBSendRegister—MIB asynchronous registration function” on page 79.

Only one create handler can be registered per object class.

Special considerations for manager application programs

Manager application programs can have somewhat different requirements from

agent application programs. A manager application program generally has no need

to register any objects unless it needs to be the target of CMIP requests from other

manager application programs. VTAM CMIP services requires that at least one

object be registered. CMIP services does not require the object to be of a particular

object class. The managerApplication object class has been defined for manager

application programs that do not have a need for any specific class.

Manager application programs can base their management on the creation of EFDs

so that they can receive CMIP event reports from managed systems. For a

description of how to create the EFDs, refer to “Filters and routes events” on page

7. Such manager application programs must register to CMIP services as an

application entity. The application entity title used must match the one specified in

the destination list within the EFDs it creates on the managed systems. For

Chapter 1. Introduction to Object Orientation and CMIP services 13

information about how an application can register as an application entity to CMIP

services, refer to “Registering an application entity” on page 135.

Manager application programs that rely on CMIP event reports for monitoring

objects at remote systems might need a mechanism to help them determine when

the connection to the managed system is down. CMIP services gives application

programs the ability to subscribe to associations. For example, a manager might

want to subscribe to each association that was used for creating an EFD. The

handle for each such association is returned in the response to the create request

for the EFDs. For information on how an application program can subscribe to an

association, refer to “Subscribing to association information” on page 133.

Special considerations for topology manager application

programs

Usually, topology manager application programs need to know about specific

resources or sets of resources, but do not want to receive event reports about all

resources in a network. For CMIP services to know which resources the manager

application program is interested in, the manager application program creates an

EFD object and specifies a filter attribute for it to indicate which event reports are

to be forwarded to the manager application program.

Therefore, to allow the VTAM topology agent to send only those notifications for

resources that a topology manager application program is interested in, the

following conditions must be met:

v VTAM must be started with the OSIEVENT=PATTERNS start option. See z/OS

Communications Server: SNA Resource Definition Reference for a description of this

start option.

v The manager application program must create EFD objects with filter attributes

that follow the patterns that CMIP services recognizes. For a description of these

patterns, refer to “Patterns of EFDs that CMIP services recognizes.”

If the OSIEVENT=ALL start option is specified, the VTAM topology agent

generates all possible notifications, as long as at least one EFD has been created. If

no EFDs have been created, no notifications are generated.

If the OSIEVENT=NONE start option is specified, the VTAM topology agent

generates no notifications.

Patterns of EFDs that CMIP services recognizes

If the filter attribute is specified according to the patterns described here and the

OSIEVENT=PATTERNS start option is specified, CMIP services recognizes that the

manager application program is interested in a particular resource or set of

resources. CMIP services recognizes the following patterns:

v A filter specifies a certain object class but not a specific resource and the

OSIEVENT=PATTERNS start option is specified.

If the object class relates to VTAM topology, the VTAM topology agent forwards

to CMIP services all notifications for all instances of that class. CMIP services

then creates an event report and sends it to the manager application program if

all criteria in the filter were met.

v A filter specifies a certain resource, with or without object class specified and the

OSIEVENT=PATTERNS start option is specified.

14 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

If the object class relates to VTAM topology, the VTAM topology agent forwards

notifications for that instance to CMIP services. CMIP services then creates an

event report and sends it to the manager application program if all criteria in the

filter were met.

v A filter is created locally by some manager application program to collect remote

notifications using a filter similar to the one shown:

 (item (equality (attributeId 1.3.18.0.0.1746, attributeValue

 (mgr (distinguishedName ’1.3.18.0.2.4.6=netid;2.9.3.2.7.4=(n

 ame "cpname");1.3.18.0.0.2175=objectname’)))))

CMIP services assumes that such filters are not meant to collect topology

information, so the presence of this EFD does not cause the topology agent to

start generating notifications.

Specific object classes that CMIP services recognizes

Here are the object identifiers for the recognized classes:

1.3.18.0.0.1829

logicalUnit

1.3.18.0.0.2281

crossDomainResource

1.3.18.0.0.1803

luGroup

1.3.18.0.0.2267

definitionGroup

1.3.18.0.0.2085

logicalLink

1.3.18.0.0.2089

port

1.3.18.0.0.1844

t4Node

CMIP error handling

This section discusses the general VTAM CMIP error-handling scheme. It covers

what types of errors can be detected and returned to invoking application

programs and what types of general handling must occur when error conditions

are returned.

The error handling scheme for the most part can be described in generic terms.

Error handling specific to a given CMIP operation is described in the section that

covers that operation.

General error handling

This section discusses how the Systems Management Application Entity (SMAE)

portion of CMIP services handles remote operations CMIP (RO/CMIP) errors. In

general, the error reporting mechanism is dictated by the area of CMIP services

that detects the error.

Errors found during outbound CMIP processing

An outbound CMIP string is a CMIP string that is being sent from an application

program to some destination.

Chapter 1. Introduction to Object Orientation and CMIP services 15

In general, any error found in a request (confirmed and unconfirmed) or response

in the originating SMAE is reported to the invoking application program by an

asynchronous CMIP services API error code as a service error.

In the case where the destination of the CMIP string is on the same system as the

origin of the CMIP string, some differences apply. If the CMIP string arrives at the

presentation layer of CMIP services before an error is detected, the CMIP error is

not reported as an API error code. In this case, once the CMIP string has passed

the presentation layer and is back in the SMAE, the SMAE does not distinguish

between same-system errors and different-system errors. The error in this case is

handled as specified in the following list for inbound CMIP strings received from

other systems. Refer to Chapter 3, “Overview of CMIP services API functions,” on

page 41 for a list of these API error codes.

The system that originated the outbound request can also receive errors detected

on the destination system in the form of RO-REJECT(U), RO-REJECT(P), and

RO-ERROR. These error types are passed to the application program if enough

information is available for routing.

Errors found during inbound CMIP processing

An inbound CMIP string is a CMIP string (either request or response) that is being

received from some CMIP sender. The sender can be on a different system or on

the same system.

When the SMAE portion of CMIP services is the destination system of the CMIP

request or response, error handling is handled as follows:

v If the error is found in ROSE, an RO-REJECT(P) is sent to the originating

system.

This is true for responses and requests (both confirmed and unconfirmed).

v If the error is found in CMISE, an RO-REJECT(U) is sent to the originating

system.

This is true for responses and requests (both confirmed and unconfirmed).

v For errors found in requests above CMISE in CMIP services, an RO-ERROR is

returned if the request if confirmed.

If the request is not confirmed, the request is discarded.

v For responses, the code above CMISE in CMIP services does not have any

known error checking.

If an error is found at this level, CMIP services attempts to pass the response to

the appropriate object or discard the message if the message cannot be routed.

v If an application program detects an error during CMIP request processing, an

RO-ERROR is returned if the request if confirmed.

If the request is not confirmed, the request is discarded.

For confirmed requests, the actual errors returned are to be defined by the

application program, such as the VTAM topology agent. Refer to “Responding to

CMIP requests” on page 161 for more information on how the VTAM topology

agent handles such errors.

v If an application program detects an error during CMIP response processing, the

error handling processing is defined by the application program. Refer to

“Responding to CMIP requests” on page 161 for more information on how the

VTAM topology agent handles such errors.

16 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP sequencing for separate CMIP operations

CMIP flows that relate to separate CMIP operations could flow between the agent

application program and the manager application program in any order. The

VTAM topology agent and CMIP services do not attempt to ensure that such CMIP

strings, generated as the result of separate operations, are sequenced and delivered

based on order of events or processing. For example, a notification that is

generated by VTAM after a GET response is built could actually be received by the

manager application program before the GET response.

Therefore, the manager application program should not rely on order of receipt as

an indication of order of processing at the agent application program. There is no

correlation between order of processing by the agent application program and time

of receipt by the manager application program.

Chapter 1. Introduction to Object Orientation and CMIP services 17

18 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 2. Sample CMIP application program

Many of the aspects of writing a CMIP application program can be explained using

a sample application program. This chapter presents a CMIP application program

that sends a simple CMIP request to another application program on any host.

The purpose of this application program is to determine whether or not CMIP

services is active on a specific host in the network. In other words, this is a ping

application program for CMIP over SNA much as APING is a ping application

program for APPC. The sample program implements this by sending a CMIP GET

request to the system object on that host. The system object should always exist,

either as part of CMIP services or as part of a CMIP application program. If an

error occurs bringing up an association to the remote CMIP services, then either

the specified host is unreachable or CMIP services is not active on that host.

Otherwise, the specified host is reachable and CMIP services is active. Errors

returned by the remote system object itself are unimportant.

Note: The system object is implemented by VTAM as part of CMIP services, so it

is always present if VTAM CMIP services is active.

The sample application program is comprised of the following source files:

ACYCMS1C

This C language module is the main logic of the application program. It

calls several different API functions to communicate with CMIP services.

ACYCMS2A

This assembler language module is the read queue exit routine for the

application program.

ACYCMS3A

This assembler language module is used to obtain the address of an API

function in LPALIB.

ACYCMS4A

This assembler language module is used to switch the application program

task into supervisor state.

ACYCMS5A

This assembler language module is used to wait on an ECB.

ACYCMS6A

This assembler language module is the TPEND exit routine for the

CMIPPING application program.

ACYCMS7A

This assembler language module is used to switch the application program

task into problem state.

“ACYCMS1C source file” on page 22 is the main logic for the CMIPPING

application program.

Note: To facilitate reading on any host terminal and printing on any host printer,

trigraph sequences have been used for square brackets. These sequences are

??(for left square bracket and ??) for right square bracket.

© Copyright IBM Corp. 1995, 2005 19

An outline of processing in function main is listed here:

 1. Make sure that the user has provided the required parameters to the program.

a. TargetNetid is the SNA netID of the host that will be pinged.

b. TargetNauname is the SNA NAU name (in this case, a CP name or SSCP

name) of the host that will be pinged.

c. ApplName is the ACB name used by CMIPPING when issuing

MIBConnect.

d. Password, if provided, is the ACB password as specified on the APPL

statement.
 2. Load the addresses of the API functions which are used.

This program uses MIBConnect, MIBDisconnect, MIBSendCmipRequest, and

MIBSendRegister. ACYCMS3A is used to find the addresses of all of the API

functions.

 3. Switch to supervisor state.

The caller of API routines must be in supervisor state. ACYCMS4A is

responsible for issuing the MODESET system macro to switch the task to

supervisor state.

 4. Connect to CMIP services.

A CMIP Application must issue MIBConnect before calling any other MIB API

functions. MIBConnect opens an ACB on behalf of the calling application

program, initializes the connection with CMIP services, and returns various

information to the caller.

 5. Register a managerApplication object.

Even though CMIPPING does not need to represent the behavior of any

objects for the purposes of the application program, it must register an object

nonetheless because CMIP services requires that requests be issued by an

object that it knows about. The managerApplication object class was defined

for manager application programs that use the registered object only as the

source of requests.

Before calling the MIBSendRegister function, it first builds the name of the

managerApplication object. The name of the system object on this system,

returned by MIBConnect, is used to build the name of this object.

 6. Wait for the registration message from CMIP services.

ACYCMS6A is called to wait on an ECB. This ECB will be posted by the read

queue exit routine (ACYCMS2A) when it is called by CMIP services. The next

message to arrive should be the registration response.

 7. Parse the registration response message from CMIP services.

If the msg_type field in the APIhdr is API_REG_ACCEPT and the invokeId

field in the APIhdr is the one returned by MIBSendRegister, then the

registration succeeded.

 8. Send a GET request to the system object on the target host.

This first builds the name of the remote system object to which a GET request

will be sent. It then builds the entire CMIP string representing the GET

argument.

The CMIP string is passed to MIBSendCmipRequest, which will send the GET

request to CMIP services for processing.

 9. Wait for the GET response message from CMIP services.

ACYCMS6A is called again to wait until the read queue exit routine posts an

ECB to wake up the main task. The next message should be the GET

response.

20 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

10. Parse the GET response to determine whether or not CMIP services is active

on the target host.

If the invokeId field in the APIhdr is the one returned by

MIBSendCmipRequest and the msg_type field in the APIhdr is API_MSG,

then the request was received by a remote CMIP services. Determining

whether or not the system object was available on the remote system and was

able to processing the request would require parsing the string portion of the

response. That is beyond the scope of this application program.

11. Disconnect from CMIP services. If MIBConnect succeeded, MIBDisconnect

should be called — even if some other error happened in between.

12. Exit the application program.

“ACYCMS2A source file” on page 29 is the read queue exit routine for the

CMIPPING application program. An outline of processing in the exit follows:

1. The VTAM reason code is always stored in the user data control block so that

the main task of CMIPPING (ACYCMS1C) can find out why the read queue

exit routine was driven.

2. If the reason code is zero, meaning that VTAM passed data to the read queue

exit routine, that data will be copied to the buffer in the user data control

block.

3. If the reason code is something other than zero, a message will be generated.

The likely scenario is that CMIP services is terminating.

4. The read queue exit routine posts an ECB which is being waited on by the

main task of CMIPPING in order to wake it up.

5. The read queue exit routine returns zero to VTAM, telling VTAM that it was

able to successfully process the message.

Note: In a real CMIP application program read queue exit routine, you probably

need additional buffer space to pass messages to the main task. Some CMIP

requests can result in many messages being returned by CMIP services, one

after another. It is unlikely that an application program designed like

CMIPPING would see all of the messages, since they would arrive more

quickly than the main task could be dispatched and process each one.

“ACYCMS3A source file” on page 31 is a utility module to load the addresses of

the API functions on behalf of the CMIPPING application program. The only

processing to perform is to load the address of each routine into a control block

passed by the caller (ACYCMS1C).

Note: This module does not check return codes from the LOAD macro and always

returns zero. This is not appropriate for a real application program, since

those modules may not be installed in LPALIB.

“ACYCMS4A source file” on page 34 is a utility module to switch into supervisor

state. The only processing to perform is to invoke the MODESET assembler

macroinstruction.

Note: CMIPPING must be authorized for the MODESET to work.

“ACYCMS5A source file” on page 35 is a utility module to wait on a specified

ECB. The only processing to perform is to invoke the WAIT assembler

macroinstruction.

Chapter 2. Sample CMIP application program 21

“ACYCMS6A source file” on page 36 is the TPEND exit routine for the CMIPPING

application program. All it does is display the reason code passed by VTAM.

“ACYCMS7A source file” on page 38 is a utility module to switch into problem

state. The only processing to perform is to invoke the MODESET assembler

macroinstruction.

ACYCMS1C source file

/***/

/* */

/* MEMBER NAME: ACYCMS1C */

/* */

/* DESCRIPTIVE NAME: Sample CMIP Application */

/* */

//* */

/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/* */

/* "RESTRICTED MATERIALS OF IBM" */

/* */

/* 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/* */

/* MEMBER CATEGORY: Sample CMIP application */

/* */

/* */

/***/

/*

 * CMIPPING - Sample C language CMIP application

 *

 * This sample application can be used to determine if CMIP Services

 * is active on a specified host in the network.

 *

 * It illustrates some of the concepts involved in writing a CMIP

 * application for use with VTAM.

 *

 * Notes: To facilitate reading on any host terminal and printing on

 * any host printer, trigraph sequences have been used for

 * square brackets. These sequences are "??(" for left square

 * bracket and "??)" for right square bracket.

 */

#pragma csect(code, "ACYCMS1C")

#pragma csect(static,"SCYCMS1C")

/***/

/* C Standard Library include files */

/***/

#include #include #include

/***/

/* VTAM include files */

/***/

#include "acyaphdh.h" /* VTAM MIB API interface */

/***/

/* type declarations */

/***/

/***/

/* An instance of MIBAddresses_t is passed to ACYCMS3A, which fills */

/* it in with actual addresses of the MIB API functions, which are */

/* loaded from LPALIB. */

/***/

22 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

typedef struct MIBAddresses_tag

{

 MIBConnect_t *MIBConnect;

 MIBDisconnect_t *MIBDisconnect;

 MIBSendRegister_t *MIBSendRegister;

 MIBSendDeleteRegistration_t *MIBSendDeleteRegistration;

 MIBSendRequest_t *MIBSendRequest;

 MIBSendResponse_t *MIBSendResponse;

 MIBSendCmipRequest_t *MIBSendCmipRequest;

 MIBSendCmipResponse_t *MIBSendCmipResponse;

} MIBAddresses_t;

/***/

/* The address of an instance of ReadQueueExitData_t is passed to */

/* MIBConnect. CMIP Services then passes that same address to the */

/* Read Queue Exit each time it is called. That allows sharing of */

/* data between the Read Queue Exit and this main task. */

/***/

typedef struct ReadQueueExitData_tag

{

 int ECB;

 int ReasonCode;

 char Buffer ??(16384??);

} ReadQueueExitData_t;

/***/

/* external functions */

/***/

/***/

/* ACYCMS2A is the Read Queue Exit for this sample CMIP application. */

/* Only the address of this routine is needed in C. */

/***/

extern void ACYCMS2A(void);

/***/

/* ACYCMS3A finds the addresses of routines in LPALIB via the LOAD */

/* assembler macroinstruction. */

/***/

extern int ACYCMS3A(MIBAddresses_t *);

/***/

/* ACYCMS4A switches to supervisor state via the MODESET assembler */

/* macroinstruction. */

/***/

extern void ACYCMS4A(void);

/***/

/* ACYCMS5A waits on an ECB via the WAIT assembler macroinstruction. */

/* It will be passed the address of the same ECB which the Read */

/* Queue Exit will post so that the Read Queue Exit can "wake up" */

/* this task when data is available. */

/***/

extern void ACYCMS5A(int *ECB);

/***/

/* ACYCMS6A is the TPEND exit for this application. */

/***/

extern void ACYCMS6A(void);

Chapter 2. Sample CMIP application program 23

/***/

/* ACYCMS7A switches to problem state via the MODESET assembler */

/* macroinstruction. */

/***/

extern void ACYCMS7A(void);

/***/

/* constants */

/***/

#define APPL_NAME "CMIPPING" /* name of this application as

 used in messages */

/***/

/* data types */

/***/

typedef void *LocalId_t; /* Local identifiers, associated

 with registered objects, must

 have a size between 1 and 8

 bytes. CMIPPING uses four-

 byte local identifiers of type

 void *. */

/***/

/* Input parameters: */

/* (1) Netid of target CMIP Services */

/* (2) Nauname of target CMIP Services */

/* (3) Application name to use (valid ACB name) */

/* (4) Optional password */

/***/

int main(int argc,const char **argv)

{

 APIhdr *APIhdr_ptr;

 char CMIP_StringArgument ??(512??);

 char MyObjectName ??(120??);

 char RemoteSystemObject ??(120??);

 char SMAE ??(100??);

 char SystemObject ??(100??);

 const char *ApplName;

 const char *Password;

 const char *TargetNauname;

 const char *TargetNetid;

 char *VTAM_Release;

 int Connected, rc;

 int LinkId;

 MIBAddresses_t APIs;

 unsigned int InvokeId;

 ReadQueueExitData_t ReadQueueExitData;

 size_t SMAE_Size, SystemObjectSize;

 unsigned int ACB_Info;

 LocalId_t *MyObjectId;

 rc = 0;

 memset(&ReadQueueExitData,0,sizeof(ReadQueueExitData));

 if (argc != 4 && argc != 5)

 {

 fprintf(stderr,

 "Usage: " APPL_NAME " Netid Nauname Applname \n"

 "\n"

 " " APPL_NAME " is used to determine whether or not\n"

 " there is an active CMIP Services on a SNA host\n"

 " specified by Netid and Nauname.\n"

24 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

"\n"

 " Applname is the ACB name used by this program.\n"

 " Netid and Nauname specify the target SNA host.\n"

 " Password (optional) is the ACB password.\n"

 "\n"

 " " APPL_NAME " cannot continue.\n");

 rc = 1;

 }

 if (rc == 0) /* If no errors so far... */

 {

 TargetNetid = argv ??(1??); /* first parm passed to program */

 TargetNauname = argv ??(2??); /* second parm */

 ApplName = argv ??(3??); /* third parm */

 if (argc == 5) /* If a password was provided... */

 Password = argv ??(4??); /* fourth parm */

 else

 Password = NULL;

 ACYCMS4A(); /* You must be in supervisor

 state to call VTAM MIB API

 routines. */

 SMAE_Size = sizeof(SMAE);

 SystemObjectSize = sizeof(SystemObject);

 MyObjectId = (void *)"Anything you want"; /* The local identifier

 for the object registered by

 this application is the

 address of this string. */

 }

 /***/

 /* Obtain addresses of API routines used by this program. */

 /***/

 if (rc == 0) /* If no errors so far... */

 {

 rc = ACYCMS3A(&APIs);

 if (rc != 0)

 {

 fprintf(stderr,

 "The address of an API routine could not be loaded\n"

 "from LPALIB.\n"

 "\n"

 APPL_NAME " cannot continue.\n");

 }

 }

 if (rc == 0) /* If no errors so far... */

 {

 rc = APIs.MIBConnect(0, /* always zero for this release */

 &LinkId, /* MIBConnect will fill in LinkId

 with a handle to the

 connection. */

 65536, /* maximum number of outstanding

 requests */

 ApplName, /* ACB name */

 (void *)ACYCMS6A, /* TPEND exit */

 (void *)ACYCMS2A, /* address of the Read

 Queue Exit */

 &SMAE_Size, /* On input, this is the size of

 the SMAE buffer. On output,

 this is the length of the SMAE

 name. */

 SMAE, /* This is where MIBConnect will

Chapter 2. Sample CMIP application program 25

store the SMAE name (if there

 is enough room). */

 &SystemObjectSize, /* On input, this is the

 size of the System Object name

 buffer. On output, this is the

 length of the System Object

 name. */

 SystemObject, /* This is where MIBConnect will

 store the System Object name

 (if there is enough room). */

 (int)&ReadQueueExitData, /* This will be

 provided to this appl’s Read

 Queue Exit by CMIP Services. */

 &ACB_Info, /* If an error occurs opening the

 ACB, this will contain the

 OPEN ACB error code. */

 &VTAM_Release, /* MIBConnect will store the

 address of the VTAM release

 level here. */

 Password, /* ACB password */

 0, /* dataspace not used */

 NULL, /* dataspace not used */

 sizeof(LocalId_t), /* size of local ids

 for all objects registered by

 this application */

 0); /* no special options specified */

 Connected = rc == 0; /* Remember whether or not

 MIBConnect was successful. */

 if (rc != 0)

 {

 fprintf(stderr,

 "MIBConnect returned %d.\n"

 "\n"

 APPL_NAME " cannot continue.\n",

 rc);

 }

 }

 if (rc == 0) /* If no errors so far... */

 {

 /***/

 /* Build the distinguished name of the object that will be */

 /* registered. It is named directly "under" the System Object, */

 /* so its name is the system object name concatenated with one */

 /* more RelativeDistinguishedName. */

 /* */

 /* A short form distinguished name (DN) will be built. Note */

 /* that CMIP Services can handle distinguished names from */

 /* applications in either short or long form. Applications can */

 /* elect to receive distinguished names from CMIP Services in */

 /* short form by specifying SHORT_NAMES as the last parameter to */

 /* MIBConnect. By default, applications receive distinguished */

 /* names in long form. */

 /***/

 strcpy(MyObjectName,SystemObject);

 strcat(MyObjectName,";1.3.18.0.0.2175=");

 strcat(MyObjectName,ApplName);

 puts("Here is the object being registered:");

 puts(MyObjectName);

 rc = APIs.MIBSendRegister(LinkId, /* This is the handle returned by

 MIBConnect. */

 &InvokeId, /* MIBSendRegister will store

26 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

an invoke id, or correlator, for

 the registration request here.*/

 &MyObjectId, /* This is the address of

 the local id to be associated

 with this object. */

 "1.3.18.0.0.2155", /* This is the object

 class of this object. */

 DN_OF_INSTANCE, /* This parameter must

 have this value. */

 MyObjectName, /* This is the dist.

 name of this object. */

 NULL, /* Use default name binding. */

 0, /* no special capabilities */

 0, /* no allomorphs */

 NULL, /* no allomorphs */

 0, /* not a create handler for any

 class */

 NULL); /* not a create handler */

 if (rc != 0)

 {

 fprintf(stderr,

 "MIBSendRegister returned %d.\n"

 "\n"

 APPL_NAME " cannot continue.\n",

 rc);

 }

 }

 if (rc == 0) /* If o.k. so far... */

 {

 ReadQueueExitData.ECB = 0;

 ACYCMS5A(&ReadQueueExitData.ECB);

 if (ReadQueueExitData.ReasonCode == 0) /* If data was received...*/

 APIhdr_ptr = (APIhdr *)ReadQueueExitData.Buffer;

 else

 rc = ReadQueueExitData.ReasonCode;

 }

 /***/

 /* Parse the response from registration to see if it was o.k. */

 /***/

 if (rc == 0) /* If o.k. so far... */

 {

 if ((APIhdr_ptr->msg_type != API_REG_ACCEPT) ||

 (APIhdr_ptr->invokeId != InvokeId)) /* If an error

 occurred... */

 {

 rc = 1;

 fprintf(stderr,

 "An unexpected response was received from object\n"

 "registration.\n"

 "\n"

 APPL_NAME " cannot continue.\n");

 }

 }

 if (rc == 0) /* If o.k. so far... */

 {

 /***/

 /* Build CMIP GET request string here using the netid and */

 /* nauname of the target host. */

 /***/

 strcpy(RemoteSystemObject,"1.3.18.0.2.4.6=");

 strcat(RemoteSystemObject,TargetNetid);

 strcat(RemoteSystemObject,";2.9.3.2.7.4=(name ");

Chapter 2. Sample CMIP application program 27

strcat(RemoteSystemObject,TargetNauname);

 strcat(RemoteSystemObject,")");

 strcpy(CMIP_StringArgument,

 "("

 "baseManagedObjectClass 2.9.3.2.3.13, "

 "baseManagedObjectInstance "

 "(distinguishedName ’");

 strcat(CMIP_StringArgument,RemoteSystemObject);

 strcat(CMIP_StringArgument,"’),"

 "attributeIdList "

 "(2.9.3.2.7.35,2.9.3.2.7.5)"

 ")");

 rc = APIs.MIBSendCmipRequest(LinkId, /* handle returned by

 MIBConnect */

 3, /* operation value is GET */

 CMIP_StringArgument,

 &MyObjectId,

 NULL,

 DS_NOT_PROVIDED,

 NULL,

 &InvokeId);

 if (rc != 0)

 {

 fprintf(stderr,

 "MIBSendCmipRequest returned %d.\n"

 "\n"

 APPL_NAME " cannot continue.\n",

 rc);

 }

 }

 if (rc == 0) /* If o.k. so far... */

 {

 ReadQueueExitData.ECB = 0;

 ACYCMS5A(&ReadQueueExitData.ECB);

 if (ReadQueueExitData.ReasonCode == 0) /* If data was received...*/

 APIhdr_ptr = (APIhdr *)ReadQueueExitData.Buffer;

 else

 rc = ReadQueueExitData.ReasonCode;

 }

 if (rc == 0)

 {

 /***/

 /* Display whether or not the GET was successful. */

 /***/

 if ((APIhdr_ptr->msg_type == API_MSG) &&

 (APIhdr_ptr->invokeId == InvokeId))

 {

 /***/

 /* Technically, the message can be a CMIP error message which */

 /* could state that the system object doesn’t exist or that */

 /* the system object can’t handle the request. Since this */

 /* program only checks to see if the specified CMIP Services */

 /* can be contacted, a CMIP error message will not be */

 /* considered a problem. */

 /***/

 puts("The remote CMIP Services was contacted successfully.");

 }

 else

 {

 fprintf(stderr,

 "The remote CMIP Services could not be contacted.\n");

28 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

rc = 1;

 }

 }

 if (Connected)

 {

 rc = APIs.MIBDisconnect(LinkId, /* This is the handle returned by

 MIBDisconnect. */

 &ACB_Info); /* If an error occurs closing the

 ACB, MIBDisconnect will store

 the CLOSE ACB error code here.*/

 if (rc != 0)

 {

 fprintf(stderr,

 "MIBDisconnect returned %d.\n",

 rc);

 }

 }

 ACYCMS7A(); /* You must be in problem

 state to exit cleanly. */

 fprintf(stderr,

 APPL_NAME " is exiting with return code %d.\n",

 rc);

 return rc;

}

ACYCMS2A source file

*/***/

/ */

/ MEMBER NAME: ACYCMS2A */

/ */

/ DESCRIPTIVE NAME: Read Queue Exit for sample CMIP */

/ application */

/ */

/ */

/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ "RESTRICTED MATERIALS OF IBM" */

/ */

/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/ */

/ MEMBER CATEGORY: Sample CMIP application */

/ */

*/***/

 TITLE ’ /**00001000

 ********’ 00002000

ACYCMS2A CSECT , 0001 00003000

ACYCMS2A AMODE 24 0001 00004000

ACYCMS2A RMODE 24 0001 00005000

@MAINENT DS 0H 0001 00006000

 USING *,@15 0001 00007000

 B @PROLOG 0001 00008000

 DC AL1(16) 0001 00009000

 DC C’ACYCMS2A 95.125’ 0001 00010000

 DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000

 LR @12,@15 0001 00013000

@PSTART EQU ACYCMS2A 0001 00014000

 USING @PSTART,@12 0001 00015000

 ST @13,@SA00001+4 0001 00016000

 LA @14,@SA00001 0001 00017000

 ST @14,8(,@13) 0001 00018000

 LR @13,@14 0001 00019000

Chapter 2. Sample CMIP application program 29

* 0014 00020000

*/**/ 00021000

/ MAINLINE */ 00022000

*/**/ 00023000

* 0014 00024000

R10 = R1; / Saves Pointer to Parameters */ 00025000

* 0014 00026000

 LR R10,R1 0014 00027000

GLB_DATA.GLB_ReasonCode = VTAM_REASON; / Tell the main task why the 00028000

* Read Queue Exit was driven. */ 00029000

* 0015 00030000

 L @04,VTAM_REASON(,R10) 0015 00031000

 ST @04,GLB_REASONCODE(,R06_USER_DATA) 0015 00032000

IF (VTAM_REASON = 0) THEN / If data is available to be 0016 00033000

* copied... */ 00034000

 LTR @04,@04 0016 00035000

 BNZ @RF00016 0016 00036000

* DO; 0017 00037000

* R11 = VTAM_LENGTH; 0018 00038000

 L @05,VTAM_LENGTH(,R10) 0018 00039000

 LR R11,@05 0018 00040000

* R3 = VTAM_LENGTH; 0019 00041000

 LR R3,@05 0019 00042000

* R2 = ADDR(GLB_Buffer); 0020 00043000

 LA R2,GLB_BUFFER(,R06_USER_DATA) 0020 00044000

* TMP_R10 = R10; 0021 00045000

 LR @07_TMP_R10,R10 0021 00046000

* R10 = VTAM_APIHDR_PTR; 0022 00047000

 L R10,VTAM_APIHDR_PTR(,R10) 0022 00048000

* MVCL(R2,R10); 0023 00049000

 MVCL R2,R10 0023 00050000

* R10 = TMP_R10; 0024 00051000

 LR R10,@07_TMP_R10 0024 00052000

* END; 0025 00053000

*ELSE 0026 00054000

* DO; 0026 00055000

 B @RC00016 0026 00056000

@RF00016 DS 0H 0027 00057000

* GEN (WTO ’CMIPPING: Read Queue Exit driven with reason <> 0!’); 00058000

@GS00027 DS 0H 0027 00059000

 WTO ’CMIPPING: Read Queue Exit driven with reason <> 0!’ 00060000

@GE00027 DS 0H 0028 00061000

* END; 0028 00062000

* 0028 00063000

*/**/ 00064000

/ Wake up the main task by posting the ECB which it is */ 00065000

/ waiting on. */ 00066000

*/**/ 00067000

* 0029 00068000

*R1 = ADDR(GLB_ECB); 0029 00069000

@RC00016 LR R1,R06_USER_DATA 0029 00070000

*GEN; 0030 00071000

* 0030 00072000

@GS00030 DS 0H 0030 00073000

 POST (1),X’FFFF’ 00074000

@GE00030 DS 0H 0031 00075000

RETURN CODE(0); / Return to VTAM. */ 00076000

* 0031 00077000

 SLR @15,@15 0031 00078000

 L @13,4(,@13) 0031 00079000

 L @14,12(,@13) 0031 00080000

 LM @00,@12,20(@13) 0031 00081000

 BR @14 0031 00082000

*END ACYCMS2A; 0032 00083000

@DATA DS 0H 00084000

 DS 0F 00085000

@SA00001 DS 18F 00086000

30 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

DS 0F 00087000

 LTORG 00088000

 DS 0D 00089000

@DYNSIZE EQU 0 00090000

@00 EQU 0 00091000

@01 EQU 1 00092000

@02 EQU 2 00093000

@03 EQU 3 00094000

@04 EQU 4 00095000

@05 EQU 5 00096000

@06 EQU 6 00097000

@07 EQU 7 00098000

@08 EQU 8 00099000

@09 EQU 9 00100000

@10 EQU 10 00101000

@11 EQU 11 00102000

@12 EQU 12 00103000

@13 EQU 13 00104000

@14 EQU 14 00105000

@15 EQU 15 00106000

@07_TMP_R10 EQU @07 00107000

R0 EQU @00 00108000

R1 EQU @01 00109000

R2 EQU @02 00110000

R3 EQU @03 00111000

R06_USER_DATA EQU @06 00112000

R10 EQU @10 00113000

R11 EQU @11 00114000

VTAM_PARM_LIST EQU 0,20,C’C’ 00115000

VTAM_REASON EQU VTAM_PARM_LIST,4,C’F’ 00116000

VTAM_APIHDR_PTR EQU VTAM_PARM_LIST+4,4,C’A’ 00117000

VTAM_LENGTH EQU VTAM_PARM_LIST+12,4,C’F’ 00118000

VTAM_APIHDR EQU 0,,C’C’ 00119000

GLB_DATA EQU 0,16392,C’C’ 00120000

GLB_ECB EQU GLB_DATA,4,C’F’ 00121000

GLB_REASONCODE EQU GLB_DATA+4,4,C’F’ 00122000

GLB_BUFFER EQU GLB_DATA+8,16384,C’C’ 00123000

 AGO .UNREF 00124000

VTAM_MSG_TYPE EQU VTAM_PARM_LIST+16,4,C’F’ 00125000

VTAM_STR_HEADER_PTR EQU VTAM_PARM_LIST+8,4,C’A’ 00126000

.UNREF ANOP 00127000

 DS 0D 00128000

@ENDDATA EQU * 00129000

@MODLEN EQU @ENDDATA-ACYCMS2A 00130000

 END ,(PL/X-370,0103,95125) 00131000

ACYCMS3A source file

*/***/

/ */

/ MEMBER NAME: ACYCMS3A */

/ */

/ DESCRIPTIVE NAME: Load addresses of MIB API functions */

/ for sample CMIP application */

/ */

/ */

/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ "RESTRICTED MATERIALS OF IBM" */

/ */

/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/ */

/ MEMBER CATEGORY: Sample CMIP application */

/ */

*/***/

 TITLE ’ /**00001000

 ********’ 00002000

Chapter 2. Sample CMIP application program 31

ACYCMS3A CSECT , 0001 00003000

ACYCMS3A AMODE 24 0001 00004000

ACYCMS3A RMODE 24 0001 00005000

@MAINENT DS 0H 0001 00006000

 USING *,@15 0001 00007000

 B @PROLOG 0001 00008000

 DC AL1(16) 0001 00009000

 DC C’ACYCMS3A 95.125’ 0001 00010000

 DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000

 LR @12,@15 0001 00013000

@PSTART EQU ACYCMS3A 0001 00014000

 USING @PSTART,@12 0001 00015000

* 0007 00016000

*/**/ 00017000

/ */ 00018000

/ MAINLINE */ 00019000

/ */ 00020000

*/**/ 00021000

* 0007 00022000

*/**/ 00023000

/ MVS will abnormally terminate the task if a routine cannot be */ 00024000

/ found. "Good" code would use the ERRET parameter on the LOAD */ 00025000

/ macro to provide an exit to be called if the specified module */ 00026000

/ cannot be found. Using that capability, this routine could */ 00027000

/ return a bad return code instead of having the task terminated */ 00028000

/ when a routine can’t be found. */ 00029000

*/**/ 00030000

* 0007 00031000

R10 = R1; / Free up R1 since LOAD will 0007 00032000

* clobber it. */ 00033000

* 0007 00034000

 LR R10,R1 0007 00035000

*RFY R1 UNRSTD; 0008 00036000

* 0008 00037000

*GEN CODE SETS(R0,R1) DEFS(ACYAPCNP) (LOAD EP=ACYAPCNP); 0009 00038000

@GS00009 DS 0H 0009 00039000

 LOAD EP=ACYAPCNP 00040000

@GE00009 DS 0H 0010 00041000

*MIBConnect = R0; 0010 00042000

* 0010 00043000

 L @11,PARM_PTR(,R10) 0010 00044000

 ST R0,MIBCONNECT(,@11) 0010 00045000

*GEN CODE SETS(R0,R1) DEFS(ACYAPD1P) (LOAD EP=ACYAPD1P); 0011 00046000

@GS00011 DS 0H 0011 00047000

 LOAD EP=ACYAPD1P 00048000

@GE00011 DS 0H 0012 00049000

*MIBDisconnect = R0; 0012 00050000

* 0012 00051000

 L @11,PARM_PTR(,R10) 0012 00052000

 ST R0,MIBDISCONNECT(,@11) 0012 00053000

*GEN CODE SETS(R0,R1) DEFS(ACYAPRGP) (LOAD EP=ACYAPRGP); 0013 00054000

@GS00013 DS 0H 0013 00055000

 LOAD EP=ACYAPRGP 00056000

@GE00013 DS 0H 0014 00057000

*MIBSendRegister = R0; 0014 00058000

* 0014 00059000

 L @11,PARM_PTR(,R10) 0014 00060000

 ST R0,MIBSENDREGISTER(,@11) 0014 00061000

*GEN CODE SETS(R0,R1) DEFS(ACYAPDRP) (LOAD EP=ACYAPDRP); 0015 00062000

@GS00015 DS 0H 0015 00063000

 LOAD EP=ACYAPDRP 00064000

@GE00015 DS 0H 0016 00065000

*MIBSendDeleteRegistration = R0; 0016 00066000

* 0016 00067000

 L @11,PARM_PTR(,R10) 0016 00068000

 ST R0,MIBSENDDELETEREGISTRATION(,@11) 0016 00069000

32 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

*GEN CODE SETS(R0,R1) DEFS(ACYAPQRP) (LOAD EP=ACYAPQRP); 0017 00070000

@GS00017 DS 0H 0017 00071000

 LOAD EP=ACYAPQRP 00072000

@GE00017 DS 0H 0018 00073000

*MIBSendRequest = R0; 0018 00074000

* 0018 00075000

 L @11,PARM_PTR(,R10) 0018 00076000

 ST R0,MIBSENDREQUEST(,@11) 0018 00077000

*GEN CODE SETS(R0,R1) DEFS(ACYAPRSP) (LOAD EP=ACYAPRSP); 0019 00078000

@GS00019 DS 0H 0019 00079000

 LOAD EP=ACYAPRSP 00080000

@GE00019 DS 0H 0020 00081000

*MIBSendResponse = R0; 0020 00082000

* 0020 00083000

 L @11,PARM_PTR(,R10) 0020 00084000

 ST R0,MIBSENDRESPONSE(,@11) 0020 00085000

*GEN CODE SETS(R0,R1) DEFS(ACYAPQCP) (LOAD EP=ACYAPQCP); 0021 00086000

@GS00021 DS 0H 0021 00087000

 LOAD EP=ACYAPQCP 00088000

@GE00021 DS 0H 0022 00089000

*MIBSendCmipRequest = R0; 0022 00090000

* 0022 00091000

 L @11,PARM_PTR(,R10) 0022 00092000

 ST R0,MIBSENDCMIPREQUEST(,@11) 0022 00093000

*GEN CODE SETS(R0,R1) DEFS(ACYAPCPP) (LOAD EP=ACYAPCPP); 0023 00094000

@GS00023 DS 0H 0023 00095000

 LOAD EP=ACYAPCPP 00096000

@GE00023 DS 0H 0024 00097000

*MIBSendCmipResponse = R0; 0024 00098000

* 0024 00099000

 L @11,PARM_PTR(,R10) 0024 00100000

 ST R0,MIBSENDCMIPRESPONSE(,@11) 0024 00101000

RETURN CODE(0); / Assume that no error 00102000

* occurred. */ 00103000

* 0025 00104000

 SLR @15,@15 0025 00105000

 L @14,12(,@13) 0025 00106000

 LM @00,@12,20(@13) 0025 00107000

 BR @14 0025 00108000

*END ACYCMS3A; 0026 00109000

@DATA DS 0H 00110000

 DS 0F 00111000

 DS 0F 00112000

 LTORG 00113000

 DS 0D 00114000

@DYNSIZE EQU 0 00115000

@00 EQU 0 00116000

@01 EQU 1 00117000

@02 EQU 2 00118000

@03 EQU 3 00119000

@04 EQU 4 00120000

@05 EQU 5 00121000

@06 EQU 6 00122000

@07 EQU 7 00123000

@08 EQU 8 00124000

@09 EQU 9 00125000

@10 EQU 10 00126000

@11 EQU 11 00127000

@12 EQU 12 00128000

@13 EQU 13 00129000

@14 EQU 14 00130000

@15 EQU 15 00131000

R0 EQU @00 00132000

R1 EQU @01 00133000

R10 EQU @10 00134000

MIBADDRESSES_T EQU 0,32,C’C’ 00135000

MIBCONNECT EQU MIBADDRESSES_T,4,C’A’ 00136000

Chapter 2. Sample CMIP application program 33

MIBDISCONNECT EQU MIBADDRESSES_T+4,4,C’A’ 00137000

MIBSENDREGISTER EQU MIBADDRESSES_T+8,4,C’A’ 00138000

MIBSENDDELETEREGISTRATION EQU MIBADDRESSES_T+12,4,C’A’ 00139000

MIBSENDREQUEST EQU MIBADDRESSES_T+16,4,C’A’ 00140000

MIBSENDRESPONSE EQU MIBADDRESSES_T+20,4,C’A’ 00141000

MIBSENDCMIPREQUEST EQU MIBADDRESSES_T+24,4,C’A’ 00142000

MIBSENDCMIPRESPONSE EQU MIBADDRESSES_T+28,4,C’A’ 00143000

PARM_PTR EQU 0,4,C’A’ 00144000

 DS 0D 00145000

@ENDDATA EQU * 00146000

@MODLEN EQU @ENDDATA-ACYCMS3A 00147000

 END ,(PL/X-370,0103,95125) 00148000

ACYCMS4A source file

*/***/

/ */

/ MEMBER NAME: ACYCMS4A */

/ */

/ DESCRIPTIVE NAME: Switch to supervisor state for sample */

/ CMIP application */

/ */

/ */

/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ "RESTRICTED MATERIALS OF IBM" */

/ */

/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/ */

/ MEMBER CATEGORY: Sample CMIP application */

/ */

*/***/

 TITLE ’ /**00001000

 ********’ 00002000

ACYCMS4A CSECT , 0001 00003000

ACYCMS4A AMODE 24 0001 00004000

ACYCMS4A RMODE 24 0001 00005000

@MAINENT DS 0H 0001 00006000

 USING *,@15 0001 00007000

 B @PROLOG 0001 00008000

 DC AL1(16) 0001 00009000

 DC C’ACYCMS4A 95.125’ 0001 00010000

 DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000

 LR @12,@15 0001 00013000

@PSTART EQU ACYCMS4A 0001 00014000

 USING @PSTART,@12 0001 00015000

* 0002 00016000

@GS00002 DS 0H 0002 00017000

 MODESET MODE=SUP 00018000

@GE00002 DS 0H 0003 00019000

*END ACYCMS4A; 0003 00020000

@EL00001 DS 0H 0003 00021000

@EF00001 DS 0H 0003 00022000

@ER00001 LM @14,@12,12(@13) 0003 00023000

 BR @14 0003 00024000

@DATA DS 0H 00025000

 DS 0F 00026000

 DS 0F 00027000

 LTORG 00028000

 DS 0D 00029000

@DYNSIZE EQU 0 00030000

@00 EQU 0 00031000

@01 EQU 1 00032000

@02 EQU 2 00033000

@03 EQU 3 00034000

@04 EQU 4 00035000

34 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

@05 EQU 5 00036000

@06 EQU 6 00037000

@07 EQU 7 00038000

@08 EQU 8 00039000

@09 EQU 9 00040000

@10 EQU 10 00041000

@11 EQU 11 00042000

@12 EQU 12 00043000

@13 EQU 13 00044000

@14 EQU 14 00045000

@15 EQU 15 00046000

 DS 0D 00047000

@ENDDATA EQU * 00048000

@MODLEN EQU @ENDDATA-ACYCMS4A 00049000

 END ,(PL/X-370,0103,95125) 00050000

ACYCMS5A source file

*/***/

/ */

/ MEMBER NAME: ACYCMS5A */

/ */

/ DESCRIPTIVE NAME: WAIT on ECB for sample CMIP application */

/ */

/ */

/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ "RESTRICTED MATERIALS OF IBM" */

/ */

/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/ */

/ MEMBER CATEGORY: Sample CMIP application */

/ */

*/***/

 TITLE ’ /**00001000

 ********’ 00002000

ACYCMS5A CSECT , 0001 00003000

ACYCMS5A AMODE 24 0001 00004000

ACYCMS5A RMODE 24 0001 00005000

@MAINENT DS 0H 0001 00006000

 USING *,@15 0001 00007000

 B @PROLOG 0001 00008000

 DC AL1(16) 0001 00009000

 DC C’ACYCMS5A 95.125’ 0001 00010000

 DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000

 LR @12,@15 0001 00013000

@PSTART EQU ACYCMS5A 0001 00014000

 USING @PSTART,@12 0001 00015000

* 0009 00016000

*/**/ 00017000

/ */ 00018000

/ MAINLINE */ 00019000

/ */ 00020000

*/**/ 00021000

* 0009 00022000

*R2 = R1; 0009 00023000

* 0009 00024000

 LR R2,R1 0009 00025000

*R1 = ADDR(THE_ECB); 0010 00026000

* 0010 00027000

 L R1,THE_ECB_PTR(,R2) 0010 00028000

*GEN EXIT; 0011 00029000

* 0011 00030000

@GS00011 DS 0H 0011 00031000

 WAIT 1,ECB=(1) 00032000

@GE00011 DS 0H 0012 00033000

Chapter 2. Sample CMIP application program 35

*RETURN CODE(0); 0012 00034000

* 0012 00035000

 SLR @15,@15 0012 00036000

 L @14,12(,@13) 0012 00037000

 LM @00,@12,20(@13) 0012 00038000

 BR @14 0012 00039000

*END ACYCMS5A; 0013 00040000

@DATA DS 0H 00041000

 DS 0F 00042000

 DS 0F 00043000

 LTORG 00044000

 DS 0D 00045000

@DYNSIZE EQU 0 00046000

@00 EQU 0 00047000

@01 EQU 1 00048000

@02 EQU 2 00049000

@03 EQU 3 00050000

@04 EQU 4 00051000

@05 EQU 5 00052000

@06 EQU 6 00053000

@07 EQU 7 00054000

@08 EQU 8 00055000

@09 EQU 9 00056000

@10 EQU 10 00057000

@11 EQU 11 00058000

@12 EQU 12 00059000

@13 EQU 13 00060000

@14 EQU 14 00061000

@15 EQU 15 00062000

R0 EQU @00 00063000

R1 EQU @01 00064000

R2 EQU @02 00065000

R14 EQU @14 00066000

R15 EQU @15 00067000

THE_ECB EQU 0,4,C’F’ 00068000

THE_ECB_PTR EQU 0,4,C’A’ 00069000

 DS 0D 00070000

@ENDDATA EQU * 00071000

@MODLEN EQU @ENDDATA-ACYCMS5A 00072000

 END ,(PL/X-370,0103,95125) 00073000

ACYCMS6A source file

*/***/

/ */

/ MEMBER NAME: ACYCMS6A */

/ */

/ DESCRIPTIVE NAME: TPEND exit for sample CMIP application */

/ */

/ */

/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/ */

/ "RESTRICTED MATERIALS OF IBM" */

/ */

/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/ */

/ MEMBER CATEGORY: Sample CMIP application */

/ */

*/***/

 TITLE ’ /**00001000

 ********’ 00002000

ACYCMS6A CSECT , 0001 00003000

ACYCMS6A AMODE 24 0001 00004000

ACYCMS6A RMODE 24 0001 00005000

@MAINENT DS 0H 0001 00006000

 USING *,@15 0001 00007000

 B @PROLOG 0001 00008000

36 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

DC AL1(16) 0001 00009000

 DC C’ACYCMS6A 95.125’ 0001 00010000

 DROP @15 00011000

@PROLOG LR @12,@15 0001 00012000

@PSTART EQU ACYCMS6A 0001 00013000

 USING @PSTART,@12 0001 00014000

* 0005 00015000

* 0005 00016000

*/**/ 00017000

/ */ 00018000

/ MAINLINE */ 00019000

/ */ 00020000

*/**/ 00021000

* 0005 00022000

SELECT (REASON_CODE); / Issue message based on reason 00023000

* code */ 00024000

 L @02,REASON_CODE(,R1) 0005 00025000

 LTR @02,@02 0005 00026000

 BM @RT00014 0005 00027000

 BE @RT00006 0005 00028000

 LA @00,12 0005 00029000

 CR @02,@00 0005 00030000

 BH @RT00014 0005 00031000

 BE @RT00012 0005 00032000

 IC @02,@CB00064(@02) 0005 00033000

 SLL @02,2 0005 00034000

 B @GL00001(@02) 0005 00035000

@GL00001 B @RT00014 0005 00036000

 B @RT00008 0005 00037000

 B @RT00010 0005 00038000

*WHEN (0) 0006 00039000

@RT00006 DS 0H 0007 00040000

* GEN; 0007 00041000

* 0007 00042000

@GS00007 DS 0H 0007 00043000

 WTO ’ ’ 00044000

 WTO ’CMIPPING TPEND DRIVEN: REASON CODE=00’ 00045000

 WTO ’ ’ 00046000

@GE00007 DS 0H 0008 00047000

*WHEN (4) 0008 00048000

 B @RC00005 0008 00049000

@RT00008 DS 0H 0009 00050000

* GEN; 0009 00051000

* 0009 00052000

@GS00009 DS 0H 0009 00053000

 WTO ’ ’ 00054000

 WTO ’CMIPPING TPEND DRIVEN: REASON CODE=04’ 00055000

 WTO ’ ’ 00056000

@GE00009 DS 0H 0010 00057000

*WHEN (8) 0010 00058000

 B @RC00005 0010 00059000

@RT00010 DS 0H 0011 00060000

* GEN; 0011 00061000

* 0011 00062000

@GS00011 DS 0H 0011 00063000

 WTO ’ ’ 00064000

 WTO ’CMIPPING TPEND DRIVEN: REASON CODE=08’ 00065000

 WTO ’ ’ 00066000

@GE00011 DS 0H 0012 00067000

*WHEN (12) 0012 00068000

 B @RC00005 0012 00069000

@RT00012 DS 0H 0013 00070000

* GEN; 0013 00071000

* 0013 00072000

@GS00013 DS 0H 0013 00073000

 WTO ’ ’ 00074000

 WTO ’CMIPPING TPEND DRIVEN: REASON CODE=12’ 00075000

Chapter 2. Sample CMIP application program 37

WTO ’ ’ 00076000

@GE00013 DS 0H 0014 00077000

*OTHERWISE 0014 00078000

 B @RC00005 0014 00079000

@RT00014 DS 0H 0015 00080000

* GEN; 0015 00081000

* 0015 00082000

@GS00015 DS 0H 0015 00083000

 WTO ’ ’ 00084000

 WTO ’CMIPPING TPEND DRIVEN: UNEXPECTED REASON CODE!’ 00085000

 WTO ’ ’ 00086000

@GE00015 DS 0H 0016 00087000

*END; 0016 00088000

* 0016 00089000

@RC00005 DS 0H 0017 00090000

RETURN CODE(RC); / return to VTAM */ 00091000

* 0017 00092000

@EL00001 DS 0H 0017 00093000

@EF00001 DS 0H 0017 00094000

@ER00001 BR @14 0017 00095000

*END ACYCMS6A; 0018 00096000

@DATA DS 0H 00097000

 DS 0F 00098000

 DS 0F 00099000

 LTORG 00100000

 DS 0D 00101000

@CB00064 DC XL12’000000000100000002000000’ 00102000

@DYNSIZE EQU 0 00103000

@00 EQU 0 00104000

@01 EQU 1 00105000

@02 EQU 2 00106000

@03 EQU 3 00107000

@04 EQU 4 00108000

@05 EQU 5 00109000

@06 EQU 6 00110000

@07 EQU 7 00111000

@08 EQU 8 00112000

@09 EQU 9 00113000

@10 EQU 10 00114000

@11 EQU 11 00115000

@12 EQU 12 00116000

@13 EQU 13 00117000

@14 EQU 14 00118000

@15 EQU 15 00119000

R1 EQU @01 00120000

RC EQU @15 00121000

TPEND_PARM_LIST EQU 0,8,C’C’ 00122000

REASON_CODE EQU TPEND_PARM_LIST+4,4,C’F’ 00123000

 AGO .UNREF 00124000

ACB_PTR EQU TPEND_PARM_LIST,4,C’A’ 00125000

.UNREF ANOP 00126000

 DS 0D 00127000

@ENDDATA EQU * 00128000

@MODLEN EQU @ENDDATA-ACYCMS6A 00129000

 END ,(PL/X-370,0103,95125) 00130000

ACYCMS7A source file

*/***/

/ */

/ MEMBER NAME: ACYCMS7A */

/ */

/ DESCRIPTIVE NAME: Switch to problem state for sample CMIP */

/ application */

/ */

/ */

/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

38 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

/ */

/ "RESTRICTED MATERIALS OF IBM" */

/ */

/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/ */

/ MEMBER CATEGORY: Sample CMIP application */

/ */

*/***/

 TITLE ’ /**00001000

 ********’ 00002000

ACYCMS7A CSECT , 0001 00003000

ACYCMS7A AMODE 24 0001 00004000

ACYCMS7A RMODE 24 0001 00005000

@MAINENT DS 0H 0001 00006000

 USING *,@15 0001 00007000

 B @PROLOG 0001 00008000

 DC AL1(16) 0001 00009000

 DC C’ACYCMS7A 95.125’ 0001 00010000

 DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000

 LR @12,@15 0001 00013000

@PSTART EQU ACYCMS7A 0001 00014000

 USING @PSTART,@12 0001 00015000

* 0002 00016000

@GS00002 DS 0H 0002 00017000

 MODESET MODE=PROB 00018000

@GE00002 DS 0H 0003 00019000

*END ACYCMS7A; 0003 00020000

@EL00001 DS 0H 0003 00021000

@EF00001 DS 0H 0003 00022000

@ER00001 LM @14,@12,12(@13) 0003 00023000

 BR @14 0003 00024000

@DATA DS 0H 00025000

 DS 0F 00026000

 DS 0F 00027000

 LTORG 00028000

 DS 0D 00029000

@DYNSIZE EQU 0 00030000

@00 EQU 0 00031000

@01 EQU 1 00032000

@02 EQU 2 00033000

@03 EQU 3 00034000

@04 EQU 4 00035000

@05 EQU 5 00036000

@06 EQU 6 00037000

@07 EQU 7 00038000

@08 EQU 8 00039000

@09 EQU 9 00040000

@10 EQU 10 00041000

@11 EQU 11 00042000

@12 EQU 12 00043000

@13 EQU 13 00044000

@14 EQU 14 00045000

@15 EQU 15 00046000

 DS 0D 00047000

@ENDDATA EQU * 00048000

@MODLEN EQU @ENDDATA-ACYCMS7A 00049000

 END ,(PL/X-370,0103,95125) 00050000

Chapter 2. Sample CMIP application program 39

40 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 3. Overview of CMIP services API functions

VTAM provides a set of API functions for management application programs to

use when interfacing with CMIP services. CMIP operations are performed through

this interface.

This chapter covers the following topics that relate to the API:

v Decisions an application programmer needs to make before coding

v Requirements for CMIP application programs

v Format of API messages

Decisions to make before coding

You must decide among the following options before you begin coding your

application program:

v Do you want to use the common storage area (CSA) interface of the data space

interface?

v What form of distinguished name does your application program require from

CMIP services?

v Is your application program to be a manager application program or an agent

application program?

The following sections describe each of these decisions.

Common storage area storage or data space storage?

The API interface provides either of two mechanisms for receiving messages. These

two mechanisms are through the following:

v Common storage area (CSA) interface

v Data space interface

Some differences exist between using CMIP services with the CSA interface and

using CMIP services with the data space interface.

Common storage area interface

In the CSA interface, the read queue exit routine is called for each message. Each

message is passed in common storage. The CSA interface is intended to be used by

low-volume users.

The following exit routines and functions run under the same task:

v Read queue exit routine

v TPEND exit routine, if there is one

v MIBConnect function

v MIBDisconnect function

Figure 1 on page 42 shows the relationship between the application program and

CMIP services for an application program using the CSA interface.

© Copyright IBM Corp. 1995, 2005 41

Data space interface

Application programs that expect to receive a large volume of messages should use

the data space interface. For this interface, messages remain in the data space until

they are freed by the application program or until the data space fills, whichever

occurs first.

The following exit routines and functions run under the same task:

v Read queue exit routine

v TPEND exit routine, if there is one

v MIBConnect function

v MIBDisconnect function

Figure 2 describes the relationship between the application program and CMIP

services for an application program using the data space interface.

 An application program that uses one or more of the individual API functions

must load the entry point for that function from LPALIB. All modules are placed in

LPALIB when the operating system is initialized. Once the entry points for the

Figure 1. Using CMIP services with the common storage area interface

Figure 2. Using CMIP services with the data space interface

42 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

APIs are known, the application program can call an API function directly. See

Table 2 on page 53 for the module names of each API function. Application

programs can have any tasking structure. The functions for reading and freeing

messages in the data space are serially reusable only.

Advantages of CSA interface and data space interface

Message strings can be transferred from CMIP services to the application program

through either CSA storage or data space storage.

In general, application programs that use the CSA interface are simpler to code.

Application programs that use the data space interface are faster.

The data space interface has the following other advantages over the CSA

interface:

v Messages can be buffered. They do not have to be retrieved immediately from

the data space. With the CSA interface, the application program must copy its

message when the read queue exit routine is called. CMIP services frees the CSA

storage containing the message on return from the read queue exit routine.

v There are fewer task switches with the data space support. The read queue exit

routine is called only when the count of messages waiting in the data space goes

from zero to one. The CSA interface, by contrast, calls the read queue exit

routine for every message. Each time the read queue exit routine is called, it

causes a dispatch of the application program’s TCB.

v CSA can be a critical resource in some configurations. The data space interface

uses no CSA for inbound messages.

To display the amount of data space storage in use by an application program, use

the D NET,STORUSE command. See z/OS Communications Server: SNA Operation for

more information about this command.

An application program using the data space interface must not allow the

messages to back up in the data space to the point where the data space fills. If

this occurs, CMIP services stops forwarding messages to the application program

until the application program calls the MIBDisconnect function and calls the

MIBConnect function again.

Differences between the CSA interface and the data space interface are described

throughout this section.

Note: To use data space storage MVS/ESA™ 3.1.3 or higher is required.

The API and the read queue exit routine handle all details of the message flow

between the application program and CMIP services. The application program

invokes the API when it needs to send a message. CMIP services returns

information to the application program according to the following methods:

v If using the CSA interface, information is returned by calling the read queue

exit routine for each message. For more information about the exit routine, refer

to “Read queue exit routine for the CSA interface” on page 88.

v If using the data space interface, information is returned by copying each

message to the data space and notifying the application program through the

read queue exit routine if the number of buffers in the data space goes from zero

to one. For more information about the exit routine, refer to “Read queue exit

routine for data space storage” on page 89.

Chapter 3. Overview of CMIP services API functions 43

Note: When the application program is notified, the application program

receives notification again only when the number of buffers returns to

zero and goes to one buffer again. The application program must call the

routine to dequeue buffers from the data space storage until this routine

indicates that there are no more buffers to receive. See “Dequeueing a

buffer with the dequeue routine” on page 92 for details.

The read queue exit routine runs in TCB mode in the application program’s

address space.

What form of distinguished name?

Your application program can choose between two forms of distinguished names:

short form and long form. Here is a distinguished name written in short form:

1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name AAAAAA)

Here is the same distinguished name written in long form:

(RelativeDistinguishedName (AttributeValueAssertion (attributeType

1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 2.9.3.2.7.4, attributeVal

ue (name "AAAAAA"))))

Application programs can build distinguished names in either form to send to

CMIP services. Application programs specify to CMIP services on the connection

options parameter passed to the MIBConnect function which form of distinguished

names they wish to receive. For a description of the MIBConnect function, refer to

“MIBConnect—MIB connection function” on page 56.

What type of application program—manager or agent?

An agent application program represents resources and processes CMIP requests

sent to those resources. A manager application program gathers information by

sending CMIP requests to resources.

Requirements for CMIP application programs

An application program that uses the API must fulfill the following requirements:

v The API must be called from the home address space.

v The application program must be authorized.

v The application program must use a task mode of the task control block (TCB).

The read queue exit routine is called under the same TCB that issued the

MIBConnect function. An application program with multiple tasks can issue the

following API functions from any of its tasks:

– MIBSendRequest

– MIBSendResponse

– MIBSendRegister

– MIBSendDeleteRegister

– MIBSendCmipRequest

– MIBSendCmipResponse
However, the application program must be prepared to handle the invoking of

the read queue exit routine from the task that originated the MIBConnect

function.

v The MIBConnect and MIBDisconnect functions must be called from the same

task.

44 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

v The application program must define the APPL definition statement and specify

the name that is to be used on the MIBConnect function. See z/OS

Communications Server: SNA Resource Definition Reference for more information

about the APPL definition statement.

– A separate APPL definition statement is needed for each MIBConnect function

that the application program is expected to perform. The application program

cannot call the MIBConnect function again without calling the MIBDisconnect

function first.

– Each successful call to the MIBConnect function that specifies the data space

vector parameter causes a new data space to be created. For more information

about the MIBConnect function, refer to “MIBConnect—MIB connection

function” on page 56.
v No API functions can be issued from the TPEND exit routine or the read queue

exit routine.

Calls to API functions can be made from more than one subtask. However, the

application program is assumed to be terminated when the subtask that issued the

MIBConnect function terminates. When the task that issued the MIBConnect

function terminates, the ACB for the application program is closed automatically.

The ACB is not closed automatically if multiple tasks are used and a subtask that

meets the following conditions terminates:

v The subtask is using the API.

v The subtask did not open the connection with the MIBConnect function.

Format of API messages

API messages have the following format:

 The type of message is determined by the first field in the API header. The string

follows the API header. The syntax of the string includes optional source

information, optional destination information, and a required message.

Description and example of the API header

The API header is built for the application program when the application program

calls API functions that send messages to CMIP services. It is returned to the

application program when the message is sent from CMIP services to the

application program.

The API header begins in the first byte of the message. The length of the header

varies according to the size of the local identifier. If the message contains data in

addition to the API header, the data begins immediately following the API header.

The C language definition of the API header follows. Note that actual local

identifiers vary in size from one to eight bytes in length and can be of any data

type. It is declared as an eight-character array for simplicity.

Figure 3. Format of API messages

Chapter 3. Overview of CMIP services API functions 45

Note: To facilitate reading on any host terminal and printing on any host printer,

trigraph sequences have been used for square brackets. These sequences are

“??(” for left square bracket and “??)” for right square bracket.

typedef struct APIhdr_tag

{

 unsigned char msg_type;

 unsigned char api_version;

 unsigned char origin;

 unsigned char RESERVED1; /* Application programs must not

 use or depend on the value of

 this field in any way. */

 unsigned int invokeId;

 unsigned int connectId;

 unsigned int numLocalIds;

 time_t timestamp;

 unsigned short resultCode;

 unsigned char RESERVED2??(2??); /* Application programs must not

 use or depend on the value of

 this field in any way. */

 unsigned int RESERVED3; /* Application programs must not

 use or depend on the value of

 this field in any way. */

 unsigned char localIds??(8??);

} APIhdr;

The actual size of the API header associated with a particular message received

from CMIP services is determined by the size of the fixed part (all fields up to but

not including the localIDs field) plus the number of attached local identifiers times

the size of each local identifier. For this release, the number of attached local

identifiers is always one.

The actual size is a useful quantity since the string portions of the message start

immediately after the API header.

To make it easier to calculate the actual size, the APIhdrSize macro is provided in

the language header file, ACYAPHDH. Given the name of an APIhdr and the size

of the application’s local identifiers, it returns the actual size of an API header. The

following example shows the APIhdrSize macro:

#define MY_LOCAL_ID_SIZE 7

APIhdr *APIhdr1;

APIhdr APIhdr2;

size_t Size1, Size2;

Size1 = APIhdrSize(*APIhdr1,MY_LOCAL_ID_SIZE);

Size2 = APIhdrSize(APIhdr2,MY_LOCAL_ID_SIZE);

API header fields

A description of each field in the API header follows:

msg_type

Indicates the type and format of message to which this header is attached. An

API message can be an indication, a confirmation, or an OSI error. Messages of

type API_MSG, API_REG_ACCEPT, API_SVC_COMPLETE, or

API_SVC_ERROR contain a formatted string immediately following the API

header. This formatted string ends with X'00'.

 API_TERMINATE_INSTANCE does not have a string, but X'00' is stored after

the local identifier for the convenience of the application program.

46 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP services uses additional values internally for the msg_type field. These

values can appear in buffer trace records generated when an application

program calls a API function to send data to CMIP services.

 Each of the possible msg_type values for APIhdr structure that can be received

by an application program is described in the following list.

API_MSG

A CMIP string or a response to a VTAM-specific request or response. An

example of a response to a VTAM-specific request is ACF.SubscribeRsp.

API_MSG is defined in ACYAPHDH. For a listing, refer to Appendix A, “C

language header file (ACYAPHDH),” on page 229.

API_REG_ACCEPT

Sent by CMIP services to indicate that the MIBSendRegister request

succeeded. API_REG_ACCEPT is defined in ACYAPHDH. For a listing,

refer to Appendix A, “C language header file (ACYAPHDH),” on page 229.

API_SVC_COMPLETE

Sent by CMIP services to indicate that the associated request was

processed correctly. This message is returned for unconfirmed CMIP

requests. API_SVC_COMPLETE is defined in ACYAPHDH. For a listing,

refer to Appendix A, “C language header file (ACYAPHDH),” on page 229.

API_SVC_ERROR

Sent by CMIP services to indicate that the associated request could not be

processed. Examples of why it could not be processed are that the string

was incorrectly formatted or that there is no network path available to the

destination. A specific error code is provided in the message to assist in

diagnosing the problem.

 In many cases, CMIP services records additional diagnostic information in

CMER VIT entry of the VTAM internal trace. See z/OS Communications

Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT for information about

the CMER VIT entry. See for z/OS Communications Server: SNA Diagnosis Vol

1, Techniques and Procedures information about how to use the VTAM

internal trace.

 API_SVC_ERROR is defined in ACYAPHDH. For a listing, refer to

Appendix A, “C language header file (ACYAPHDH),” on page 229.

API_TERMINATE_INSTANCE

Sent by CMIP services to indicate that the object has been deregistered.

 API_TERMINATE_INSTANCE is defined in ACYAPHDH. For a listing,

refer to Appendix A, “C language header file (ACYAPHDH),” on page 229.

api_version

Reserved for use by CMIP services.

origin

Indicates where the message was generated and how the message should be

used. Each of the possible origin field values is described in the following list:

ORIGIN_OBJ

Response to a request that was previously submitted by the object

receiving the message. The receiving object can use the invoke identifier to

look up the previous request.

ORIGIN_REMOTE

Generated by another object and is a form of unsolicited request or linked

Chapter 3. Overview of CMIP services API functions 47

reply. The object receiving this message should use the invoke identifier

from the API header and the association data from the string to respond to

the message.

invokeId

Can be used to correlate requests and responses. If the origin field is set to

ORIGIN_OBJ, the invoke identifier field was generated by the application

program when a previous request was sent to CMIP services. If the origin field

is set to ORIGIN_REMOTE, the invoke identifier field was generated by a

remote object and must be returned in a response along with the association

handle so that the remote object can use it for correlation.

connectId

The connect identifier field is reserved for use by the API.

timestamp

Set by the API when a message is sent to CMIP services.

numLocalIds

Specifies the number of local identifiers following the fixed-size portion of the

API header. This field is always zero or one.

resultCode

For API_SVC_ERROR messages, the error code is stored here. The same error

code also appears in the string.

localIds

Can contain a local identifier. A local identifier is a unique identifier for an

object and was provided to MIBSendRegister when that object was registered.

If a local identifer is present, it ranges in size from 1 to 8 bytes. The number of

bytes is determined by the application program and is specified in a parameter

passed to MIBConnect. This local identifiers field is passed back to the

application program unchanged by CMIP services.

Description and example of the string

Strings that are included in API_MSG messages begin with the following fields,

some of which are optional, depending on whether the API_MSG is a request,

indication, response, or confirmation, as shown in Table 1 on page 49.

48 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 1. Destination and source fields in string headers

Type of CMIP

message src-type field src field dest-type field dest field

Request Optional for subtree

managers, only. This is

choice (2), if included.

This is never included

for application

programs other than

subtree managers.

Optional. This is the

distinguished name, if

included.

Optional. This can be

any choice.

Optional. This can be

any choice.

Indication 1 assoc-handle Never included Never included

Response Optional for subtree

managers, only. This is

choice (2), if included.

This is never included

for application

programs other than

subtree managers.

Optional. This is the

distinguished name, if

included.

 1 assoc-handle

Confirmation 1 assoc-handle Never there Never there

The message field is the only field that must be provided on requests. Responses

and linked replies must be formatted with the association data that was provided

on the indication. (The indication is the request being answered.) The caller of the

MIBSendRequest function or MIBSendResponse function must build the string

with all fields. Other API functions do not require the caller to build the string

with all fields.

For API functions that build the string automatically, for example, the

MIBSendCmipRequest function, separate fields are provided to pass individual

fields that are placed in the string by the API function.

The syntax of the string header follows, in ASN.1 notation:

Header ::= SEQUENCE

 {

 src-type INTEGER -- source type

 {

 assoc-handle(1) -- association handle

 } OPTIONAL,

 src GraphicString OPTIONAL, -- source

 dest-type INTEGER -- destination type

 {

 assoc-handle(1), -- association handle

 full-dn(2), -- distinguished name

 ae-title(3 -- AE title

 } OPTIONAL,

 dest GraphicString OPTIONAL, -- destination

 msg GraphicString -- the message itself

 }

The format of the required msg field in the string header is dictated by the syntax

of the message sent or received by the application program. The following example

shows a CMIP string, as received by an application program from CMIP services.

This string immediately follows the localIds field of the APIhdr structure.

Chapter 3. Overview of CMIP services API functions 49

src-type 1, src a1,msg CMIP-1.ROIVapdu (invokeID 327686, operation-v

alue 3, argument (baseManagedObjectClass 1.3.18.0.0.1829, baseManage

dObjectInstance (distinguishedName (RelativeDistinguishedName (Attri

buteValueAssertion (attributeType 1.3.18.0.2.4.6, attributeValue "MY

NETID")), RelativeDistinguishedName (AttributeValueAssertion (attrib

uteType 1.3.18.0.0.2032, attributeValue "MYCPNAME")), RelativeDistin

guishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.1984,

 attributeValue "APPL1")))), synchronization bestEffort, scope (basi

cScope 0), filter (and ())))

Rules for the source and destination fields in the string

When messages are received from CMIP services through the API (on indications

and confirmations), the following rules apply:

v If the msg_type field in the API header is API_MSG, the src-type field in the

string header is set to 1 (assoc-handle) and the src field contains the association

handle over which the message arrived.

v If the msg_type field in the API header is not API_MSG, the source data is not

present.

v If the local identifier in the API header refers to a subtree manager and the

message is not targeted for that subtree manager, the dest-type field in the string

is full-dn and the dest field contains the distinguished name of the object

instance that is supposed to receive the message.

The application program does not normally build the src-type, src, dest-type, and

dest portions of the string, but instead relies on MIBSendCmipRequest and

MIBSendCmipResponse functions to build this portion of the string.

The src-type and src fields in the string header need to be provided only if the

object needs to override the distinguished name associated with the registered

object that is building the message.

The only acceptable src-type is distinguished name (0), which is the default. If the

src field is provided and it contains a distinguished name that is different from the

provider, the message contains a source override. Only a subtree manager can

specify a source name to override the source name in the string header. If an

application program that is not a subtree manager specifies a source, the message

is flagged with an error.

The dest-type and dest fields are not required. However, these fields can be used

to explicitly address messages when the syntax of the message does not contain

routing information or when the routing information is not understood by CMIP

services. If the CMIP standard is being used, explicit destination information is not

required because the destination is given in the managedObjectInstance field.

The same does not apply, however, to OSI responses prompted by an indication

and containing the same invoke identifier as the indication. When an object sends

a response, it must provide the association handle from the indication that

prompted the response.

Messages received by an object instance do not contain the dest-type and dest

fields.

The msg field in the string header contains the formatted string. The string must

begin with an ASN.1 module name and an ASN.1 syntax name. For all CMIP

flows, the module name is CMIP-1 because CMIP-1 is the name of the ASN.1

module that defines the syntaxes used for CMIP flows.

50 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Following the module name is the type name. The module name and type name

must be separated by exactly one period; no other characters can be placed

between these names. The remainder of the message is defined by the ASN.1

syntax for the module and type specified.

Chapter 3. Overview of CMIP services API functions 51

52 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 4. CMIP services API function syntax and operands

This chapter describes all of the VTAM CMIP services API functions. Function

descriptions are arranged alphabetically.

For each function, an example of its use is given. These examples are not intended

to show the sequence of operations that an application program must perform as a

management application program. They merely show the syntax of calling the API

function.

Overview of API functions

Table 2 lists the API functions and indicates the name of the module that must be

loaded before invoking an API function. Although logical names such as

MIBConnect and MIBSendRegister are used in the table, the physical names of the

API functions are the module entry point names.

The abbreviation N/A in the Module Entry Point column indicates that these are

the data space modules used for dequeueing or releasing the messages from the

data space. The addresses of these modules are returned on the MIBConnect

function. Refer to the data space vector format and the interface control block

(ISTNMICB) format in the “MIBConnect—MIB connection function” on page 56.

The Type column indicates whether the function is synchronous or asynchronous.

For a description of these types, refer to “Synchronous and asychronous functions”

on page 55.

 Table 2. API functions: module entry point, type, and where to find more information

API function

Module entry

point Type

More

information

MIBConnect ACYAPCNP Synchronous Page 56

MIBDisconnect ACYAPD1P Synchronous Page 67

MIBSendRegister ACYAPRGP Asynchronous Page 79

MIBSendDeleteRegistration ACYAPDRP Asynchronous Page 77

MIBSendRequest ACYAPQRP Asynchronous Page 83

MIBSendCmipRequest ACYAPQCP Asynchronous Page 70

MIBSendResponse ACYAPRSP Asynchronous Page 83

MIBSendCmipResponse ACYAPCPP Asynchronous Page 73

Data space dequeue routine N/A Synchronous Page 92

Data space release routine N/A Synchronous Page 93

How the functions are coded

The functions are coded in the same format as C language functions. Parameters

are positional, and a value must be specified for each parameter to the function.

For some parameters, NULL (a pointer with value zero) may be specified instead

of some other value. Such parameters might be described as optional input under

the Declarations section for each API function.

© Copyright IBM Corp. 1995, 2005 53

Parameters are separated by commas. Parameter values must be specified in the

format listed in the declarations section.

For example, in the declarations section of the MIBConnect function, the following

line indicates that the API level must be specified as an unsigned integer:

 unsigned int, /* API level - input */

In the parameter descriptions, the phrase “null-terminated string” means a

sequence of EBCDIC characters terminated by a byte containing zero, for example:

char *s1 = "Hello";

char s2[6] = {'H','e','l','l', 'o', '\o'}

Refer to the appropriate C language publication for your operating system for

more information on operand formats.

How the functions are described

For each function, the following information is included:

v Purpose of the function

v Declarations for the function

v Descriptions of the parameters

v A list of return codes

v An example of how the function is coded in an application program

Completion information

If errors occur in CMIP services while processing a request or response, CMIP

services sends a MIB.ServiceError message to the object that originated the request

or response.

All of the functions have a return code that should be examined by the application

program. A value of zero means that the function was successful. Other values

alert the application program to incorrect parameters, resource shortages (for

example, memory allocation errors), and other problems.

The return codes for each API function are listed under Return codes in the section

for each function.

These return codes are used by VTAM CMIP services and appear in the CMER VIT

entry and in messages sent from VTAM CMIP services to the application

programs. See z/OS Communications Server: SNA Diagnosis Vol 2, FFST Dumps and

the VIT for information about the CMER VIT entry.

54 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 3 shows which VIT entries are for each API function.

 Table 3. VIT entries for each API function

API function VIT entry

MIBConnect MC01 and MC02

MIBDisconnect MDIS

MIBSendCmipResponse MQRS

MIBSendCmipRequest MQRQ

MIBSendDeleteRegistration MDEL

MIBSendRegister MREG

MIBSendResponse MQRS

MIBSendRequest MQRQ

Synchronous and asychronous functions

The return codes from synchronous functions indicate whether the function

completed successfully. MIBConnect and MIBDisconnect are synchronous

functions.

The return codes from asynchronous functions indicate only whether CMIP

services received the request or response. All API functions, except MIBConnect

and MIBDisconnect, are asynchronous functions.

All of the API functions that return an invoke identifier are asynchronous

functions. The invoke identifier can be used to correlate the response to the

original request. A return code of zero from the API function indicates that the

request was successfully sent to CMIP services. The confirmation from the target of

the request serves as the acknowledgement.

On confirmed requests, the object sending the request receives a MIB.ServiceError

message or a CMIP message (ROIVapdu, RORSapdu, or ROERapdu). On

unconfirmed requests, the object sending the request receives a MIB.ServiceAccept

message or a MIB.ServiceError message.

Since responses are never confirmed, the object sending the response receives a

MIB.ServiceAccept message or a MIB.ServiceError message.

Return codes are integers. A value of 0 always indicates success with no errors to

report. The actual confirmation or error report is returned by CMIP services by one

of the following methods:

v If using CSA storage, information is returned through the read queue exit

routine. See “Read queue exit routine for the CSA interface” on page 88 for

details.

v If using data space storage, information is returned by calling the dequeue and

release routines returned in the data space vector field. For more information

about these routines, refer to Chapter 6, “Dequeue and release routines for data

space storage,” on page 91.

Chapter 4. CMIP services API function syntax and operands 55

MIBConnect—MIB connection function

Purpose

The MIBConnect function returns a link identifier that is used to refer to the

connection in future calls to the API.

The MIBConnect function is a synchronous function. The return code from the

MIBConnect function indicates whether the function completed successfully.

The MIBConnect function opens an ACB on behalf of the caller. The ACB is closed

when the caller calls the MIBDisconnect function or when the task that called the

MIBConnect function terminates. The ACB is not closed when CMIP services

terminates or when VTAM terminates.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBConnect_t(

 unsigned int, /* API level - input */

 int *, /* link identifier - output */

 unsigned int, /* maximum outstanding invoke

 identifiers - input */

 const char *, /* application ACB name - input */

 void *, /* TPEND routine pointer - optional input */

 void *, /* read queue exit routine pointer - input */

 unsigned int *, /* SMAE name buffer size - input/output */

 char *, /* SMAE name buffer - output */

 unsigned int *, /* System Object name buffer size -

 input/output */

 char *, /* System Object name buffer - output */

 int, /* user data - input */

 unsigned int *, /* OPEN ACB error value - output */

 char **, /* VTAM release level - output */

 const char *, /* password - optional input */

 unsigned int, /* data space vector length - optional input */

 ISTRIV10_t *, /* data space vector - optional input */

 unsigned int, /* local identifier length - input */

 unsigned int); /* connection options - input */

Parameters

API level

This parameter must be 0.

link identifier

MIBConnect returns a value in this field. The application program must

provide this value in subsequent API calls.

maximum outstanding invoke identifiers

This parameter determines how many unique invoke identifiers can be

generated locally by the API. Invoke identifiers are generated on all requests

that are sent to CMIP services and can be reused once the response has been

received by the requestor. API functions generate and clear invoke identifiers.

The caller of the API function does not need to generate or keep track of

outstanding invoke identifiers except where needed for its own

request/response correlation.

Note: Valid values are 256 to 65535. Input values are changed to meet the

minimum or maximum range.

56 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

application ACB name

This parameter is a pointer to a null-terminated string that represents the

unique name associated with application. The name must be unique among

VTAM resources and must be defined on the APPL definition statement. It

must follow the naming rules that apply to application programs that open an

ACB.

 The following APPL definition statement defines TOPOMGR as the application

program’s ACB name.

TOPOMGR APPL ACBNAME=TOPOMGR

See z/OS Communications Server: SNA Resource Definition Reference for

information about the ACBNAME operand on the APPL definition statement.

Note: The value of this parameter is converted to uppercase before being

passed to OPEN ACB.

TPEND routine pointer

This parameter is the address of an application assembler routine to be called

by VTAM if VTAM terminates before the application program terminates or

issues the MIBDisconnect function. Specify NULL if you do not wish to

provide a termination exit routine.

 See z/OS Communications Server: SNA Programming for information about the

TPEND exit routine.

 As with other TPEND exit routines, the application program should clean up

in an orderly manner for a normal HALT command. The application program

should deregister objects, discard EFDs, and disconnect.

 In response to a HALT QUICK or HALT CANCEL command, the application

program should not attempt to clean up. It should only issue the

MIBDisconnect function.

Note: The ACBUSER field are set to the value of the user data parameter

supplied on the MIBConnect function when the TPEND exit routine is

scheduled.

read queue exit routine pointer

This parameter is the address of an application assembler routine to be called

by CMIP services when messages are to be received. See Chapter 5, “Read

queue exit routine,” on page 87 for information about the read queue exit.

SMAE name buffer size

This is the size of the buffer provided by the application for the SMAE name.

100 bytes is the recommended size for this buffer.

 MIBConnect is set the value to the actual length (including the terminating

zero) on output.

 If the buffer provided is not long enough, MIBConnect returns the

MB_ERR_STORAGE_TOO_SMALL return code. The application should allocate

a new buffer using the updated value of this parameter and call MIBConnect

again.

SMAE name buffer

MIBConnect places a pattern for building SMAE names in the storage pointed

to by this parameter. The application program can use this pattern with the C

Standard Library function sprintf to build the name of a SMAE name on this

host.

Chapter 4. CMIP services API function syntax and operands 57

The following example SMAE name format as returned by MIBConnect:

1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name SSCP1A);1.3.18.0.2.4.12=%s

Assuming that format is the name of a character array containing the format

string and AE is the name of a character array to hold the resulting SMAE

name, the following code will build a SMAE name that could be used for the

RegisterAE special CMIP Services request.

sprintf(AE,format,"MyApplName");

The name of the default SMAE provided by CMIP Services has OSISMASE as

the final attribute value in the distinguished name.

System Object name buffer size

This is the size of the buffer provided by the application for the System Object.

The recommended size for this buffer is 100 bytes.

 MIBConnect sets the value to the actual length (including the terminating zero)

on output.

 If the buffer provided is not long enough, MIBConnect returns

MB_ERR_STORAGE_TOO_SMALL. The application program should then

allocate a new buffer using the updated value of this parameter and call

MIBConnect again.

System Object name buffer

MIBConnect places the name of the System Object into this buffer.

 The System Object name should be used when creating local EFDs; EFDs are

named “under” the System Object.

user data

This four-byte field is provided to the application program on entry to the read

queue and to the TPEND exit routines.

OPEN ACB error value

When control is returned to the application program and the return code is

MB_ERR_CONNECT, the OPEN ACB error value parameter needs to be

evaluated.

 The following list shows the OPEN ACB error values returned in the OPEN

ACB error value parameter.

ERROR Field

Meaning

0 (X'00')

OPEN successfully opened this ACB.

4 (X'04')

The ACB has been opened.

20 (X'14')

OPEN cannot be processed because of a temporary shortage of storage.

36 (X'24')

The OPEN ACB failed for one of the following reasons:

v The password specified by the ACB did not match the

corresponding password in the APPL entry.

v The ACB did not specify a password and the APPL contains one.

v The security management product determined that the user is not

authorized to open the ACB.

58 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

70 (X'46')

OPEN was issued in an exit routine.

80 (X'50')

VTAM has not been included as part of the operating system. The fault

lies in the system definition procedures.

82 (X'52')

VTAM is included as part of the operating system, but the VTAM

operator issued a HALT command, and VTAM has shut down. You

cannot attempt to establish a session or communicate with any LUs.

84 (X'54')

Either the address supplied in the ACB’s APPLID field lies beyond the

addressable range of your application program, or no entry is found in

the VTAM configuration tables that matches the name indicated by the

ACB’s APPLID field (or supplied by the operating system). If the

OPEN macroinstruction is specified correctly, your system programmer

might have:

v Failed to include your application program’s symbolic name during

VTAM definition

v Improperly handled the symbolic name

Refer to the description of the APPLID operand in the ACB

macroinstruction.

86 (X'56')

A match for your application program’s symbolic name is found, but it

is for an entry other than an APPL. If you specified this name in the

ACB’s APPLID field, verify that you have the correct name and

handled this name properly (see the APPLID operand of the ACB

macroinstruction). If the symbolic name is supplied by the operating

system, the supplied name is suspect.

88 (X'58')

Another ACB, already opened by VTAM, indicates the same

application program symbolic name that this ACB does. The system

programmer might have assigned the same symbolic name to two

application programs. This is valid only if the programs are not open

concurrently. Possibly the system operator initiated your program at

the wrong time.

90 (X'5A')

No entry is found in the VTAM configuration tables that matches the

name indicated by the ACB’s APPLID field (or supplied by the

operating system). This error might have occurred for one of the

following reasons:

v The VTAM operator deactivated the APPL entry.

v The APPL entry was never created.

v If VTAM is trying to recover for persistent sessions, the application

is not in pending recovery state.

92 (X'5C')

VTAM is included as part of the operating system but inactive.

94 (X'5E')

The address supplied in the ACB’s APPLID field lies beyond the

addressable range of your application program.

Chapter 4. CMIP services API function syntax and operands 59

95 (X'5F')

The VTAM transient being used by the application for an OPEN ACB

does not match the level of VTAM.

96 (X'60')

An apparent system error occurred. Either there is a logic error in

VTAM, or there is an error in your use of OPEN or CLOSE that VTAM

did not properly detect. Save all applicable program listings and

storage dumps, and consult IBM Service.

98 (X'62')

The APPLID length byte is incorrectly specified.

100 (X'64')

The address supplied in the ACB’s PASSWD field lies beyond the

addressable range of your application program.

102 (X'66')

The PASSWD length byte is incorrectly specified.

104 (X'68')

The APPLID field in the ACB identifies an application program that is

defined with AUTH=PPO in its APPL definition statement. Another

program with the same authorization is active. Only one program

defined with AUTH=PPO can be active at a time.

106 (X'6A')

The address supplied in the ACB’s vector list field lies beyond the

addressable range of your application program.

108 (X'6C')

The VTAM ACB vector list length byte is incorrectly specified.

112 (X'70')

You attempted to open an ACB that is in the process of being closed.

This can occur when a VTAM application program job step or subtask

is canceled or terminates abnormally. The process of closing the ACB

can continue after the job step or subtask has actually terminated.

Subsequently, if the job step is restarted or the subtask is reattached

before the ACB closing process has been completed, an OPEN

macroinstruction that is then issued for that ACB fails.

114 (X'72')

This code occurs when an OPEN ACB fails for an LU 6.2 application

with VERIFY=OPTIONAL or VERIFY=REQUIRED for one of the

following reasons:

v The security management product is not installed.

v The security management product is not active.

v The security management product resource class APPCLU is not

active.

v The application represented by the ACB is not in the security

management product Started Procedures Table.

116 (X'74')

VTAM rejected the takeover by an alternate application because the

original application did not enable persistence, although it is capable of

persistence.

118 (X'76')

OPEN failed because the specified application is in a recovery pending

60 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

state and PERSIST=YES is not specified on the ACB that is being

opened. The OPEN may also fail if the application is in pending

terminate state and an active CDRSC with the same name has been

found in the sysplex.

120 (X'78')

ACB option mismatch between original application and opening

takeover or recovery application. One or more of the following can

apply:

v MACRF mismatch—both values must be either LOGON or

NLOGON; they cannot differ.

v NQNAMES mismatch—both applications must be specified as

NQNAMES=YES or NQNAMES=NO; they cannot differ.

v PERSIST mismatch—both applications must be specified as

PERSIST=YES.

v FDX mismatch—both applications must be specified as FDX=YES or

FDX=NO; they cannot differ.

v ISTVAC81 mismatch—the application capabilities vector provided by

the recovering application does not match that of the original

application.

140 (X'8C')

PERFMON=YES is coded on the ACB but the application is not CNM

and POA authorized.

188 (X'BC')

The ACB is in the process of being opened or closed by another

request.

244 (X'F4')

The application program is not authorized for SRBEXIT=YES. A request

to open an ACB whose corresponding APPL definition statement

specifies SRBEXIT=YES is rejected unless the application program is

APF authorized, or using key 0–7, or in supervisor state.

246 (X'F6')

NIB storage address not valid. A CNM authorized application program

either failed to supply an NIB pointer in the NIB field of the ACB, or

the NIB address supplied lies beyond the addressable range of the

application program.

250 (X'FA')

NIB options not valid. Either an application program without CNM

authorization (specified in its associated VTAM resource definition)

supplied an NIB pointer in its ACB; or, if CNM authorized, the

application program failed to supply valid NIB options on the NIB

macroinstruction.

254 (X'FE')

Duplicate unsolicited RU routing requested. The CNM routing table

indicated that this application program was to receive the same

unsolicited formatted requests that were already being routed to

another active CNM authorized application program. Only one

application program can be actively receiving a particular type of RU

(for example, RECFMS) at a time.

VTAM release level

Indicates the address of VTAM release-level vector. See z/OS Communications

Server: SNA Programming for more information about the format of this vector.

Chapter 4. CMIP services API function syntax and operands 61

password

Specifies a pointer to a null-terminated string. The application program should

specify NULL if no password is to be supplied. If a password is specified on

PRTCT operand of the APPL definition statement, MIBConnect fails unless a

matching password is provided in the password parameter. Password

protection is to prevent a program from running as a predefined application

program without authorization.

 The value of the password is specified on the PRTCT operand of the APPL

definition statement. The value must conform to the rules for coding this

operand described in the z/OS Communications Server: SNA Resource Definition

Reference. The maximum length is 8 bytes. Valid passwords contain only

alphanumeric characters.

 If application program’s ACB name is TOPOMGR, the APPL definition

statement with a password is similar to the following example:

TOPOMGR APPL ACBNAME=TOPOMGR,PRTCT=password

Note: The value of this parameter is converted to uppercase before being

passed to OPEN ACB. This is because VTAM converts the related

definition to uppercase but does not convert OPEN ACB parameters to

uppercase. Without the conversion to uppercase by MIBConnect, this

function would fail if the application provided a lowercase value for this

parameter.

data space vector length

If using data space storage, specify a value that is at least the size of

(ISTRIV10_t), which is the length of the data space vector. If you are using

common storage area storage, specify 0. For an explanation of these types of

storage, see “Common storage area storage or data space storage?” on page 41.

data space vector

If you are using data space storage, specify the address of the data space

vector (ISTRIV10_t). If you are using the CSA interface, specify NULL. If the

MIBConnect function is successful, the fields in this control block are set by

VTAM.

 The format of the data space vector is:

Offset Meaning

0 (X'00')

Vector Length

1 (X'01')

Vector identifier = X'10'

2 (X'02')

Name of data space. (The field is 8 bytes long.)

10 (X'0A')

Address of interface control block (ISTNMICB)

14 (X'0E')

STOKEN for data space interface. This value is used in ALESERV MVS

macro to obtain the ALET value.

22 (X'16')

Reserved

26 (X'1A')

Address of the dequeue routine

62 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

30 (X'1E')

Address of the release routine

 The ISTNMICB structure is allocated in the data space. The user application

must copy this structure into private storage for any future references because

the data space can be deleted at any time if VTAM is terminated. Referring to

the original after the data space has been deleted results in an abend. By

contrast, calling the dequeue and release routines using private copies of their

addresses causes an error indication to be returned. It is not valid to refer

directly to the data space through a means other than the dequeue or release

routine. Those routines should not be called after VTAM is terminated or after

issuing the MBDisconnect function.

 The format of the interface control block (ISTNMICB) is:

Offset Meaning

0 (X'00')

Reserved

4 (X'04')

Address of the dequeue routine

8 (X'08')

Address of the release routine

local identifier length

Indicates the size of the local identifiers for this application program. The

range is 1—8.

connection options

Specify one of the following values:

NO_CONNECT_OPTIONS

Indicates that the application program is to use default behaviors for the

connection with CMIP services.

SHORT_NAMES

Indicates that CMIP services is to send distinguished names to the

application program in the short form. Otherwise, CMIP services sends

distinguished names to the application program in the long form. In either

case, the application program can format distinguished names in strings

sent through the API functions in either short or long form.

 For a description of short and long names, refer to “What form of

distinguished name?” on page 44.

Return codes

0 The MIBConnect function was successful, but warning messages might

have been issued. Check the OPEN ACB error value parameter for

warning messages. See the list of OPEN ACB error values on page 58.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

Chapter 4. CMIP services API function syntax and operands 63

If using common storage area storage, the read queue exit routine stops

functioning.

 If using data space storage, messages are not put on the data space.

MB_ERR_CONNECT

The MIBConnect was not successful. If the error condition indicated by the

OPEN ACB error value parameter can be eliminated, another MIBConnect

can be issued.

MB_ERR_INVALID_DS_VECTOR

The value specified for the data space vector length parameter is valid, but

the data space vector parameter is not provided.

MB_ERR_INVALID_API_LEVEL

An incorrect value for the API level parameter was passed.

MB_ERR_INVALID_APPL_NAME

The value specified for the application name parameter is longer than 8

characters.

MB_ERR_INVALID_CONNECT_OPTIONS

The value specified on the connection options parameter is not valid.

Specify either NO_CONNECT_OPTIONS or SHORT_NAMES as the value

for the connection options parameter.

MB_ERR_INVALID_DS_VECTOR_SIZE

If the data space vector parameter is specified, the data space vector length

must be at least the size of (ISTRIV10_t), which is the length of the data

space vector.

MB_ERR_INVALID_ENVIRONMENT

Data space storage was specified on the data space vector length

parameter, but the environment does not support data spaces.

MB_ERR_INVALID_ERROR_FLAG

The OPEN ACB error value parameter does not point to a valid storage

location.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_INVALID_LOCAL_ID_SIZE

The value specified on the local identifier length parameter is outside the

acceptable range of 1—8.

MB_ERR_INVALID_MAX_INVOKE_IDS

The value specified for the maximum outstanding requests parameter is

not valid.

MB_ERR_INVALID_PASSWORD

The value specified for the password parameter is not between 0 and 8

characters.

MB_ERR_INVALID_READ_QUEUE_EXIT

The read queue exit routine was not provided.

MB_ERR_INVALID_RELEASE_LEVEL

The value specified for the VTAM release level parameter is not valid.

MB_ERR_INVALID_SMAE_NAME

The value specified for the SMAE name buffer parameter is not valid.

64 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MB_ERR_INVALID_SMAE_NAME_SIZE

The buffer sent to the MIBConnect function is too small to accommodate

the name of the SMAE. The actual amount of storage required is returned

in the SMAE name length parameter.

MB_ERR_INVALID_SYSTEM_NAME

The value specified for the system object name buffer parameter is not

valid.

MB_ERR_INVALID_SYSTEM_NAME_SIZE

The buffer sent to the MIBConnect function is too small to accommodate

the name of the system object. The actual amount of storage required is

returned in the system object name buffer size parameter.

MB_ERR_INVALID_TPEND_EXIT

The TPEND exit routine is not valid.

MB_ERR_INVALID_USER_DATA

The user data parameter was not provided.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBConnect function can be coded in an

application program.

 typedef struct ReadQueueExitData_tag

 {

 int ECB;

 int ReasonCode;

 char Buffer ??(16384??);

 } ReadQueueExitData_t;

 typedef void *LocalId_t;

 char SMAE ??(100??);

 char SystemObject ??(100??);

 char *VTAM_Release;

 const char *ApplName;

 const char *Password;

 int LinkId;

 int rc;

 ReadQueueExitData_t ReadQueueExitData;

 size_t SMAE_Size, SystemObjectSize;

 unsigned int ACB_Info;

 extern void ACYCMS2A(void);

 extern void ACYCMS6A(void);

 rc = APIs.MIBConnect(0, /* always zero for this release */

 &LinkId, /* MIBConnect will fill in LinkId

 with a handle to the

 connection. */

 65536, /* maximum number of outstanding

 requests */

 ApplName, /* ACB name */

 (void *)ACYCMS6A, /* TPEND exit */

 (void *)ACYCMS2A, /* address of the Read

 Queue Exit */

 &SMAE_Size, /* On input, this is the size of

 the SMAE buffer. On output,

 this is the length of the SMAE

 name. */

 SMAE, /* This is where MIBConnect will

 store the SMAE name (if there

Chapter 4. CMIP services API function syntax and operands 65

is enough room). */

 &SystemObjectSize,/* On input, this is the

 size of the System Object name

 buffer. On output, this is the

 length of the System Object

 name. */

 SystemObject, /* This is where MIBConnect will

 store the System Object name

 (if there is enough room). */

 (int)&ReadQueueExitData, /* This will be provided

 to this application’s read

 queue exit by CMIP Services. */

 &ACB_Info, /* If an error occurs opening the

 ACB, this will contain the

 OPEN ACB error code. */

 &VTAM_Release, /* MIBConnect will store the

 address of the VTAM release

 level here. */

 Password, /* ACB password */

 0, /* dataspace not used */

 NULL, /* dataspace not used */

 sizeof(LocalId_t), /* size of local ids

 for all objects registered by

 this application */

 0); /* no special options specified */

66 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBDisconnect—MIB disconnection function

Purpose

The MIB disconnection function sends a message to the API to terminate the

session and clear all outstanding requests on the connection. There might be many

objects registered under one MIB connection and all outstanding requests for those

objects are cleared by the MIB disconnect service. The application program using

the CMIP services connection should not terminate the connection unless all

outstanding requests might be lost without damage to the registered objects.

MIBDisconnect is a synchronous service. The return code from the MIBDisconnect

function indicates whether the function completed successfully.

If you want to call a MIBConnect function with the same application ACB name as

the ACB name used on a previous MIBConnect function, you must call the

MIBDisconnect function before calling the MIBConnect function.

The MIBConnect function opens an ACB on behalf of the caller. The ACB is closed

when the caller calls the MIBDisconnect function or when the task that called the

MIBConnect function terminates. The ACB is not closed when CMIP services

terminates or when VTAM terminates.

If using data space storage, the data space is freed by VTAM. The application

program must not call the data space storage dequeue and release routines after it

calls the MIBDisconnect function, because the results are unpredictable and the

application program might abend.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBDisconnect_t(

 int, /* link identifier - input */

 unsigned int *); /* CLOSE ACB error value - output */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

CLOSE ACB error value

When control is returned to the application program and the return code is

MB_ERR_MIBDISCONNECT, this flag needs to be evaluated.

 The following list shows the CLOSE ACB error values returned in the CLOSE

ACB error value parameter.

ERROR Field

Meaning

0 (X'00')

CLOSE successfully closed the ACB.

4 (X'04')

A CLOSE macroinstruction has been successfully issued for this ACB

(or the ACB has never been opened in the first place).

20 (X'14')

CLOSE cannot be processed because of a temporary shortage of

storage.

Chapter 4. CMIP services API function syntax and operands 67

64 (X'40')

Outstanding OPNDST OPTCD=ACQUIRE is not released.

66 (X'42')

The ACB has been closed, but an apparent system error has prevented

the successful termination of one or more of the sessions that the

application program has. There is a logic error in VTAM; consult IBM

Service. The LUs that have not had their sessions terminated are not

available to other application programs, and LUs with which you were

requesting a session when the CLOSE macroinstruction was issued are

likewise unavailable. You can notify the VTAM operator (while the

program is running) of the situation so that the operator can make the

LUs available to other application programs.

70 (X'46')

CLOSE was not issued in the mainline program. OPEN and CLOSE

cannot be issued in any exit routine.

76 (X'4C')

This application program is authorized to issue VTAM operator

commands and receive VTAM messages. A CLOSE was issued, but

messages are still queued for it, or VTAM is waiting for a reply, or

both. See z/OS Communications Server: SNA Programming for more

information.

80 (X'50')

VTAM is no longer included as part of the operating system.

96 (X'60')

An apparent system error occurred. Either there is a logic error in

VTAM; or there is an error in your use of OPEN or CLOSE that VTAM

did not properly detect. Save all applicable program listings and

storage dumps, and consult IBM Service.

112 (X'70')

CLOSE was issued while the program was in the process of

terminating abnormally. The CLOSE is not necessary because the ACB

is closed by VTAM when the task terminates.

188 (X'BC')

The ACB is in the process of being opened or is in the process of being

closed by another request.

Return codes

0 The MIBDisconnect was successful, but warning messages might have been

issued. Check the CLOSE ACB error value parameter for warning

messages. See the list of CLOSE ACB error values on page 67.

MB_ERR_MIBDISCONNECT

The MIBDisconnect function was not successful. If the error condition

indicated by the CLOSE ACB error value parameter can be eliminated,

another MIBDisconnect can be issued.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

68 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_INVALID_ERROR_FLAG

The CLOSE ACB error value parameter does not point to a valid storage

location.

Example of function in an application program

The following example shows how the MIBDisconnect function can be coded in an

application program.

int LinkId;

int rc;

unsigned int ACB_Info;

rc = APIs.MIBDisconnect(LinkId, /* This is the handle returned by

 MIBDisconnect. */

 &ACB_Info); /* If an error occurs closing the

 ACB, MIBDisconnect will store

 the CLOSE ACB error code here.*/

Chapter 4. CMIP services API function syntax and operands 69

MIBSendCmipRequest—CMIP request function

Purpose

Use this function when an application program or object is sending a CMIP

request.

The MIBSendCmipRequest function queues a request to CMIP services. Use the

MIBSendCmipRequest function for CMIP requests instead of the MIBSendRequest

function, to allow consistent manipulation of messages.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBSendCmipRequest_t(

 int, /* link identifier - input */

 unsigned int, /* argument type - input */

 const char *, /* argument - input */

 const void *, /* local identifier - input */

 const char *, /* source - input */

 unsigned int, /* destination type - input */

 const char *, /* destination - input */

 unsigned int *); /* returned invoke identifier -

 output */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

argument type

This should be the CMIP operation value of the operation being requested.

 The operation values are given in ACYIDCMS.

argument

This null-terminated string contains the bulk of the request. The ASN.1 type is

determined by the CMIP operation value of the request, and is found in the

ANY DEFINED BY table for the operation value in ACYIDCMS.

local identifier

Pointer to the local identifier of the object that generated this request. The

same local identifier appears in a subsequent response.

source

The distinguished name of the originator of the request. This can be used to

override the source of the message. This is used to resolve any appearance of

the MIB variable distinguished name. Specify NULL if you do not choose to

specify a value.

destination type

This specifies the type of destination data that is being proved in the

destination argument. The valid values are DS_NOT_PROVIDED,

DS_FULL_DN, DS_ASSOC_HANDLE, and DS_AE_TITLE.

 If this field is set to DS_NOT_PROVIDED, then the stack uses the object name

in the CMIP parameter as the destination object name.

destination

This specifies the destination of a CMIP string. Specify NULL if the destination

type parameter is DS_NOT_PROVIDED. Otherwise, specify the pointer to a

distinguished name, association handle, or application entity title.

70 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

returned invoke identifier

Specifies the invoke identifier. The invoke identifier is used to correlate this

request with a response that arrives subsequently.

Return codes

0 The function was successful.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_INVALID_ARGUMENT

The argument parameter was not provided.

MB_ERR_INVALID_ARGUMENT_TYPE

An incorrect argument type parameter was provided.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops

functioning.

 If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL

If using a data space and the data space is out of storage, this warning is

returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to

CMIP services.

MB_ERR_INVALID_DEST

The value of the destination parameter is inconsistent with the value of the

destination type parameter. This return code is returned if, for example,

destination type is DS_ASSOC_HANDLE, but destination is NULL.

MB_ERR_INVALID_DEST_TYPE

An incorrect destination type parameter was passed.

MB_WARN_EXIT_FAILURE

If using common storage area storage and the application program has

indicated that it has had an unrecoverable error when returning to the read

queue exit routine, this warning is returned to remind the application

program that no messages will be returned to the application program.

This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_INVALID_INVOKE_ID

The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING

A local identifier was not provided.

MB_ERR_INVALID_MAX_INVOKE_IDS

The value specified for the maximum outstanding requests parameter is

not valid.

Chapter 4. CMIP services API function syntax and operands 71

MB_ERR_MSG_MISSING

The message parameter was not provided.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the

MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendCmipRequest function can be

coded in an application program.

char CMIP_StringArgument ??(512??);

int LinkId;

int rc;

LocalId_t *MyObjectId;

unsigned int InvokeId;

rc = APIs.MIBSendCmipRequest(LinkId, /* handle returned by

 MIBConnect */

 3, /* operation value is GET */

 CMIP_StringArgument,

 &MyObjectId,

 NULL,

 DS_NOT_PROVIDED,

 NULL,

 &InvokeId);

72 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendCmipResponse—CMIP response function

Purpose

Use this function when an application program or object is sending a CMIP

response. MIBSendCmipResponse queues responses to CMIP services associated

with requests that were previously received by the application program from CMIP

services.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBSendCmipResponse_t(

 int, /* link identifier - input */

 unsigned int, /* invoke identifier - input */

 unsigned int, /* last in chain - input */

 unsigned int, /* success - input */

 unsigned int, /* argument type - input */

 const char *, /* argument - input */

 const void *, /* local identifier input */

 const char *, /* source - input */

 const char *, /* association handle - input */

 unsigned int *); /* returned invoke identifier -

 output */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

invoke identifier

This is the invoke identifier of the request which is being responded to with

this API call.

last in chain

This indicates to CMIP services whether this message is the last response that

is generated by this application program for this request. This allows CMIP

services to construct the correct message (linked reply or response). A nonzero

value indicates that the response is the last in a chain of responses (RORSapdu

or ROERapdu). A zero value indicates that the response is not the last in a

chain of responses (ROIVapdu—linked reply).

success

This indicates whether the response is positive or negative. This indicates to

CMIP services how to interpret the next parameter. A nonzero value indicates

that the response represents a positive, successful response. A zero value

indicates that the response is negative.

Note: If the last in chain parameter is zero, the success parameter must be

nonzero. A linked reply cannot be sent as an error.

argument type

For linked-replies (messages with the last in chain parameter set to zero), this

should be two, the CMIP operation value for a linked-reply.

 For RORSapdu messages, this should be the CMIP operation value of the

operation being responded to.

 For ROERapdu messages, this should be the CMIP error value.

 The operation values and error values are given in ACYIDCMS.

Chapter 4. CMIP services API function syntax and operands 73

argument

This null-terminated string contains the bulk of the CMIP string which is built

by CMIP services, on behalf of the application program, for this API function.

 For ROIVapdu messages (when the last in chain parameter is zero), this string

is used for the value of the argument parameter.

 For RORSapdu messages (when the last in chain parameter is nonzero and the

success parameter is nonzero), this string is used for the value of the result

parameter.

 For ROERapdu messages (when the last in chain parameter is nonzero and the

success parameter is zero), this string is used for the value of the parameter.

local identifier

Pointer to the local identifier of the object that is responding. Specify the same

identifier as the one specified in the request.

source

The distinguished name of the originator of the request. This can be used to

override the source of the message. This is used to resolve any appearance of

the MIB variable distinguished name. Specify NULL if you do not choose to

specify a value.

association handle

This is the association identifier of the association that is to be used to send the

response. It is required and must be the same as the association handle that

was received on the message that is being answered.

returned invoke identifier

Specifies the invoke identifier. The invoke identifier is used to correlate this

request with a response that arrives subsequently. This will be filled in only for

linked replies. For linked replies, the last in chain parameter is zero.

Return codes

0 The function was successful.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_ARGUMENT_MISSING

The argument parameter was not provided.

MB_ERR_ARGUMENT_TYPE_MISSING

An argument type parameter was not provided.

MB_ERR_ARGUMENT_TYPE_INVALID

An incorrect argument type parameter was provided.

MB_ERR_ASSOC_HANDLE_MISSING

The association handle parameter was not provided.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops

functioning.

 If using data space storage, messages are not put on the data space.

74 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MB_WARN_DATA_SPACE_FULL

If using a data space and the data space is out of storage, this warning is

returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to

CMIP services.

MB_ERR_DEST_TYPE_INVALID

An incorrect destination type parameter was passed.

MB_WARN_EXIT_FAILURE

If using common storage area storage and the application program has

indicated that it has had an unrecoverable error when returning to the read

queue exit routine, this warning is returned to remind the application

program that no messages will be returned to the application program.

This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_INVOKEID_MISSING

The invoke identifier parameter was not provided.

MB_ERR_LAST_IN_CHAIN_MISSING

The last in chain parameter was not provided.

MB_ERR_LOCAL_ID_MISSING

A local identifier was not provided.

MB_ERR_MAX_OUTSTANDING

The value specified for the maximum outstanding requests parameter is

not valid.

MB_ERR_SUCCESS_MISSING

The success argument parameter was not provided.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the

MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendCmipResponse function can be

coded in an application program.

#include "acyaphdh"

#define FALSE 0

#define TRUE 1

extern void *MyLocalId_ptr;

int rc;

int LinkId;

unsigned int InvokeId;

MIBSendCmipResponse_t *MIBSendCmipResponse;

/*******************************/

/* Send accessDenied ROERapdu. */

/*******************************/

rc = MIBSendCmipResponse(LinkId,

 InvokeId, /* the invoke identifier from the request */

Chapter 4. CMIP services API function syntax and operands 75

TRUE, /* last in chain (not linked reply) */

 FALSE, /* not successful (i.e., ROERapdu) */

 7,

 "(invokeID 1179660, error-value 2)",

 MyLocalId_ptr,

 NULL,

 "a1", /* association handle of the request

 being answered */

 NULL); /* no new invoke identifier since

 last-in-chain is TRUE */

76 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendDeleteRegistration—Deregistration function

Purpose

The MIBSendDeleteRegistration deletes a registered object. Any objects registered

under the object being deleted are also deleted. An object’s registration can be

removed by local identifier or by distinguished name. Only one of them is

required. Both can be provided.

A non-NULL value in the distinguished name parameter indicates that a valid

distinguished name was provided.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBSendDeleteRegistration_t(

 int, /* link identifier - input */

 unsigned int *, /* returned invoke

 identifier - output */

 const void *, /* local identifier - optional

 input */

 const char *); /* distinguished name - optional

 input */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier

Specifies the invoke identifier. The invoke identifier is used to correlate this

request with a response that arrives subsequently.

local identifier

Pointer to the local identifier of the object that is to be deleted. Specify NULL

for the local identifier parameter if only the distinguished name is provided.

distinguished name

This is the distinguished name of the object instance being deleted. If you

provide a local identifier, the distinguished name is optional. Specify NULL if

you do not provide a distinguished name.

 If you specify a name for this parameter, CMIP services uses the name to look

up the object instance to be deleted or to verify that the object instance selected

with the local identifier has a matching name.

Return codes

0 The function was successful.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops

functioning.

Chapter 4. CMIP services API function syntax and operands 77

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL

If using a data space and the data space is out of storage, this warning is

returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to

CMIP services.

MB_WARN_EXIT_FAILURE

If using common storage area storage and the application program has

indicated that it has had an unrecoverable error when returning to the read

queue exit routine, this warning is returned to remind the application

program that no messages will be returned to the application program.

This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the

MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendDeleteRegistration function can be

coded in an application program.

#include "acyaphdh.h"

int rc;

int LinkId;

MIBSendDeleteRegistration_t *MIBSendDeleteRegistration;

/***/

/* Delete a registration for the object with local */

/* identifier MyLocalId. */

/***/

rc = MIBSendDeleteRegistration(LinkId,

 &InvokeId,

 &MyLocalId,

 NULL);

78 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendRegister—MIB asynchronous registration function

Purpose

The MIB registration function must be called at least once in order for an

application to access CMIP services or receive unsolicited messages. The MIB

registration function can be called many times on any given MIB connection. For

each call to the MIB registration function a unique local identifier must be

provided by the caller. The local identifier can be used to distribute messages to

the appropriate objects as they arrive over the connection. Because the local

identifier must be provided on the registration call, it could be a pointer to a

control block that could be directly referred to from the API header. The

application program might also provide a handle for secondary routing. The size

of the local identifiers is specified on the local identifier length parameter of the

MIBConnect function.

A registered object can be a create handler for zero or more object classes. In other

words, it can be responsible for handling CMIP create requests for instances of

certain classes.

An application program specifies this property for an object by providing a list of

classes on the call to MIBSendRegister when registering the object that is a create

handler.

The responsibilities of a create handler are described in “Create handlers” on page

13, which describes create processing.

A registered object is an instance of one specific object class. However, it can act

like an instance of other classes if appropriate. Allomorphism is the term used to

describe an object which can act like an instance of more than one class. The usual

reason for allomorphism is when an object acts like an instance of the classes of

which its class is a subclass.

An application program specifies this property for an object by providing a list of

classes on the call to MIBSendRegister when registering the object which acts

allomorphic to other classes.

A response will be generated by CMIP services for each call to the CMIP services

registration function. The invoke identifier field in the API header can be used to

correlate the response to the initial registration request. The response can be of two

possible types. If the registration was successful the response is of type

MIB.RegisterAccept, otherwise the response is of type MIB.ServiceError.

The application program must correlate the response from CMIP services to the

registration request, using the invoke identifier, and determine by the message type

in the API header whether or not the registration completed successfully.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBSendRegister_t(

 int, /* link identifier - input */

 unsigned int *, /* returned invoke identifier -

 output */

 const void *, /* local identifier - input */

 const char *, /* object class - input */

 int, /* name type - input */

Chapter 4. CMIP services API function syntax and operands 79

const char *, /* distinguished name - input */

 const char *, /* name binding object

 identifier - input */

 unsigned int, /* capability flags - input */

 unsigned int, /* allomorphs count - input */

 char **, /* allomorphs array - input */

 unsigned int, /* create handlers count - input */

 char **); /* create handlers array - input */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier

Specifies the invoke identifier. The invoke identifier is used to correlate this

request with a response that arrives subsequently.

local identifier

Pointer to the local identifier of the object that is to be registered. Specify

NULL for the local identifier parameter if only the distinguished name is

provided.

object class

This parameter is the registered class of the object being registered. The class is

required on all registration calls.

name type

This must be DN_OF_INSTANCE.

distinguished name

This is the distinguished name of the object instance being registered. To use

the distinguished name in future calls to CMIP services, the &DN MIB variable

can be used to refer to the distinguished name associated with the object

instance (see “MIB variable format” on page 98).

name binding object identifier

This is the object identifier for the name binding to be used. If NULL is

specified for this parameter, CMIP services chooses a name binding.

capability flags

A parameter used to specify special properties of the object being registered.

 The value should be NO_CAPABILITIES if no special properties are desired or

SUBTREE_MANAGER if the object being registered should be a manager of

the subtree with its distinguished name as the root.

allomorphs count

This is the number of classes to which this object is allomorphic.

allomorphs array

This is an array of pointers to character strings, each of which is the object

identifier of a class to which this object is allomorphic.

create handlers count

This is the number of classes for which this object is a create handler.

create handlers array

This is an array of pointers to character strings, each of which is the object

identifier of a class for which this object is a create handler.

Return codes

0 The function was successful.

80 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_INVALID_CAPABILITY_FLAGS

The value specified for the capability flags parameter is not valid.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops

functioning.

 If using data space storage, messages are not put on the data space.

MB_ERR_DISTINGUISHED_MISSING

The distinguished name parameter was not provided.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_INVALID_INVOKE_ID

The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING

A local identifier was not provided.

MB_ERR_MAX_OUTSTANDING

The value specified for the maximum outstanding requests parameter is

not valid.

MB_ERR_NOT_REGISTERED

For common storage area storage, the application program has indicated

that it has had an unrecoverable error when returning to the read queue

exit routine or that the data space is out of storage. The registration will

not be allowed.

MB_ERR_OBJECT_CLASS_MISSING

The object class name parameter was not provided.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the

MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendRegister function can be coded in

an application program.

char MyObjectName ??(120??);

int LinkId;

int rc;

LocalId_t *MyObjectId;

unsigned int InvokeId;

rc = APIs.MIBSendRegister(LinkId, /* This is the handle returned by

 MIBConnect. */

 &InvokeId, /* MIBSendRegister will store an

 invoke id, or correlator, for

Chapter 4. CMIP services API function syntax and operands 81

the registration request here.*/

 &MyObjectId, /* This is the address of

 the local id to be associated

 with this object. */

 "1.3.18.0.0.2155", /* This is the object

 class of this object. */

 DN_OF_INSTANCE, /* This parameter must

 have this value. */

 MyObjectName, /* This is the distinguished

 name of this object. */

 NULL, /* Use default name binding. */

 0, /* no special capabilities */

 0, /* no allomorphs */

 NULL, /* no allomorphs */

 0, /* not a create handler for any

 class */

 NULL); /* not a create handler */

82 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendRequest—MIB queue request function

Purpose

Use this function when an application program needs to send VTAM-specific

requests. For a list of these requests, refer to Chapter 10, “VTAM-specific requests

and responses,” on page 133.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBSendRequest_t(

 int, /* link identifier - input */

 unsigned int *, /* returned invoke identifier -

 output */

 const void *, /* local identifier - input */

 const char *); /* message - input */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier

Specifies the invoke identifier. The invoke identifier is used to correlate this

request with a response that arrives subsequently.

local identifier

Pointer to the local identifier of the object that is issuing the request.

message

This is a pointer to a formatted string which contains the string header and the

request data.

Return codes

0 The function was successful.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops

functioning.

 If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL

If using a data space and the data space is out of storage, this warning is

returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to

CMIP services.

MB_WARN_EXIT_FAILURE

If using common storage area storage and the application program has

indicated that it has had an unrecoverable error when returning to the read

queue exit routine, this warning is returned to remind the application

Chapter 4. CMIP services API function syntax and operands 83

program that no messages will be returned to the application program.

This message will still be routed to CMIP services.

MB_ERR_INVALID_INVOKE_ID

The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING

A local identifier was not provided.

MB_ERR_INVALID_MAX_INVOKE_IDS

The value specified for the maximum outstanding requests parameter is

not valid.

MB_ERR_MSG_MISSING

The message parameter was not provided.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the

MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendRequest function can be coded in

an application program.

int LinkId;

unsigned int InvokeId;

MIBSendRequest_t *MIBSendRequest;

/***/

/* Retrieve information on the association with handle a1. */

/***/

rc = MIBSendRequest(LinkId,

 &InvokeId,

 &MyLocalId,

 "msg ACF.GetAssociationInfo("

 "handle ’a1’, info 11111111)");

84 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendResponse—MIB queue response function

Purpose

Use this function when an application program needs to send a VTAM-specific

response to CMIP services. This function is not used to send ROIVapdu,

RORSapdu, or ROERapdu responses.

One message that is sent by MIBSendResponse is MIB.DeleteResponse. For a list of

these responses, refer to Chapter 10, “VTAM-specific requests and responses,” on

page 133.

Declarations

The following declarations indicate the order of the parameters for this function.

typedef int MIBSendResponse_t(

 int, /* link identifier - input */

 unsigned int, /* invoke identifier - output */

 const void *, /* local identifier - input */

 const char *, /* source - input */

 const char *, /* destination association

 const char *, handle - input */

 const char *); /* message - input */

Parameters

link identifier

Specifies the link identifier returned by the MIBConnect function.

invoke identifier

This is the invoke identifier of the request which is being responded to with

this API call.

local identifier

Pointer to the local identifier of the object that is responding. Specify the same

identifier as the one specified in the request.

source

The distinguished name of the originator of the request. This can be used to

override the source of the message. This is used to resolve any appearance of

the MIB variable distinguished name. Specify NULL if you do not choose to

specify a value.

destination association handle

This is the association identifier of the association that is to be used to send the

response. It is required and must be the same as the association handle that

was received on the message that is being answered.

message

This is a pointer to a formatted string which contains the string header and the

response data.

Return codes

0 The function was successful.

MB_ERR_ALLOC

An error occurred allocating storage. If MB_ERR_ALLOC is received by the

application program from an API function and there is a corresponding

REQS record in the VIT with a nonzero return code, the LPBUF pool is not

large enough and should be increased.

Chapter 4. CMIP services API function syntax and operands 85

MB_ERR_ASSOC_HANDLE_MISSING

The association handle parameter was not provided.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops

functioning.

 If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL

If using a data space and the data space is out of storage, this warning is

returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to

CMIP services.

MB_WARN_EXIT_FAILURE

If using common storage area storage and the application program has

indicated that it has had an unrecoverable error when returning to the read

queue exit routine, this warning is returned to remind the application

program that no messages will be returned to the application program.

This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID

The value specified on the link identifier parameter does not refer to a

valid connection.

MB_ERR_INVALID_INVOKE_ID

The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING

A local identifier was not provided.

MB_ERR_MSG_MISSING

The message parameter was not provided.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the

MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE

VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendResponse function can be coded in

an application program.

const char *AssocHandle;

int LinkId;

int rc;

void *LocalId;

unsigned int InvokeId;

rc = MIBSendResponse(LinkId,InvokeId,

 LocalId,NULL,AssocHandle,,

 "MIB.DeleteResponse(1,processingFailure)");

86 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 5. Read queue exit routine

For the common storage area (CSA) interface, the read queue exit routine is

entered when VTAM CMIP services needs to notify or send data to the application

program.

For the data space interface, the read queue exit routine is entered when VTAM

CMIP services needs to notify the application program that:

v There are messages on the data space to be read

v CMIP services is terminating

v The data space is full

The requirements for callers of the read queue exit routine are:

Location

User private

Key Same key that was used when the MIBConnect function was called

State Supervisor state

AMODE

31-bit

Residency mode

Any

ASC mode

Primary

Interrupt status

Enabled

Dispatchable unit mode

TCB

Locks No locks held

ENQs No ENQs held

@space

Same address space from which MIBConnect was issued

The data passed to the read queue exit routine is located in CSA storage and is

allocated in the same key that was used when the MIBConnect function was

called. The data is not fetch protected, so any key can be used to copy it. The read

queue exit routine should not attempt to free any storage passed to it. Storage is

freed automatically when the exit routine terminates. Application programs can

vary depending on product data and queuing structures. The following list gives

recommendations for the read queue exit routine:

v Use the contents of the user data field located in register 6 to set up the

environment. This field can be the address of an autodata area to improve

performance, or it can be NULL.

v Save the calling application program’s registers in the provided save area.

v Check the VTAM reason codes to determine why the exit routine was called and

what action should be taken. For a list of reason codes, refer to “VTAM reason

codes (for data space)” on page 89 and “VTAM reason codes (for CSA)” on page

88.

© Copyright IBM Corp. 1995, 2005 87

Read queue exit routine for the CSA interface

This section describes how the read queue exit routine is called for the application

program when CSA storage is used for receiving data from CMIP services.

VTAM reason codes (for CSA)

Reason code

Explanation

0 Data is being passed to the read queue exit routine.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services has terminated. Signal the application program main task to

issue the MIBDisconnect function. No data is passed for this reason code.

Note: Your read queue exit routine should be coded to ignore unrecognized reason

codes and set the return code to 0.

For a reason code of zero, copy any data presented from CSA storage to private

storage. Then queue the copied data to the appropriate task. CMIP services

examines the return code only if the read queue exit routine is driven with a

reason code of 0. Set register 15 as follows:

Return code

Explanation

0 The read queue exit routine was successful.

8 The read queue exit routine had a temporary internal processing failure;

for example, it is out of storage.

 CMIP services builds an ROER if the message passed to the exit is a

confirmed request of type ROIVapdu. The read queue exit routine

continues to function.

16 The read queue exit routine had a permanent internal processing failure.

 CMIP services builds an ROER if the message passed to the exit routine is

a confirmed request of type ROIVapdu. It also builds these ROERs for any

subsequent confirmed ROIV requests until the application program

disconnects from the API. The read queue exit routine does not continue to

receive data. It is driven again only if CMIP services terminates of if

application program calls the MIBDisconnect function and then calls the

MIBConnect function again.

Registers upon entry (for CSA)

The following list shows the registers upon entering the read queue exit routine.

Register

Contents

1 Address of variable length parameter list. The end of the parameter list is

indicated by the number 1 in the high-order bit of the last word. For

details about the parameter list, refer to “Parameter list (for CSA)” on page

89.

6 Contents of the user data field that was passed on the MIBConnect

function.

13 Address of an 18 fullword save area.

88 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

14 Return address.

15 Entry point address of the exit routine.

Registers upon termination (for CSA)

The following list shows the registers upon terminating the read queue exit

routine.

Register

Contents

0-14 Unchanged, restored to values on entry.

15 Return code:

0 Successful; input data processed.

8 Unsuccessful; storage failure.

16 Unsuccessful; terminate the exit routine.

Parameter list (for CSA)

The following list shows the parameter list for the read queue exit routine. The

decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) VTAM reason code. For a list, refer to “VTAM reason codes (for CSA)” on

page 88.

4 (4) Address of API header.

8 (8) Address of string header. Refer to “Description and example of the string”

on page 48 for details.

12 (C) Length of API header + string header + CMIP string. Four-byte field that

represents the length of the total data to be copied.

Read queue exit routine for data space storage

This section describes how the read queue exit routine is called for the application

program when data space storage is used for receiving data from CMIP services.

VTAM reason codes (for data space)

Reason code

Explanation

MB_DATA_ON_DATA_SPACE

CMIP services has placed one or more messages in the data space.

MB_WARN_DATA_SPACE_FULL

Data space storage is full. Signal the appropriate application task to issue

the MIBDisconnect function.

MB_ERR_CMIP_SERVICES_INACTIVE

CMIP services has terminated. Signal the appropriate application task to

issue the MIBDisconnect function.

Note: Your read queue exit routine should be coded to ignore unrecognized reason

codes and set the return code to 0.

Read queue exit for data space

Chapter 5. Read queue exit routine 89

Contents of register 15 are not examined when read queue exit routine returns.

Any messages in the data space are the responsibility of the application program.

CMIP services does not perform any special processing to build ROERs for these

messages. The read queue exit routine continues to be driven every time the

number of waiting messages in the data space goes from zero to one until the

application program disconnects from the API.

Registers upon entry (for data space)

The following list shows the registers upon entering the read queue exit routine.

Register

Contents

1 Address of variable length parameter list. The end of the parameter list is

indicated by the number 1 in the high-order bit of the last word. For

details about the parameter list, refer to “Parameter list (for data space).”

6 Contents of user data field which was passed on the MIBConnect function.

13 Address of an 18 fullword save area.

14 Return address.

15 Entry point address of the exit.

Registers upon termination (for data space)

The following list shows the registers upon terminating the read queue exit

routine.

Register

Contents

0-14 Unchanged, restored to values on entry

15 Zero

Parameter list (for data space)

The following list shows the parameter list for the read queue exit routine. The

decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) VTAM reason code. For a list, refer to “VTAM reason codes (for data

space)” on page 89.

Read queue exit for data space

90 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 6. Dequeue and release routines for data space

storage

The dequeue routine retrieves messages from the data space, one at a time.

The release routine frees the data space storage for each message that has been

processed.

The release and dequeue routines are non-reentrant per application program.

This chapter describes:

v Format of data on the data space

v Dequeuing a buffer with the dequeue routine

v Releasing a buffer with the release routine

Format of data on data space

The format for data on data space storage is shown in the following list. The

decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) Address of API header (within data space). Refer to the declaration of

APIhdr in ACYAPHDH under Appendix A, “C language header file

(ACYAPHDH),” on page 229.

4 (4) Address of string header (within data space). Refer to “Description and

example of the string” on page 48 for details.

8 (8) Length of API header + string header + CMIP string. This is a 4-byte field

that represents the length of the total data to be copied.

The requirements for callers of the read queue exit routine are:

Location

User private

Key Key 6

State Supervisor state

AMODE

31-bit

Residency mode

Any

ASC mode

Access Register mode

Interrupt status

Enabled

Dispatchable unit mode

TCB

Locks No locks held

ENQs No ENQs held

© Copyright IBM Corp. 1995, 2005 91

@space

User address space

Dequeueing a buffer with the dequeue routine

When the application program is notified by the read queue exit routine that data

is on the data space (MB_DATA_ON_DATA_SPACE), the application program

must call the dequeue routine to receive the data. The dequeue routine dequeues

the buffer until register 0 returns a 0 buffer count.

The dequeue routine address is returned on the MIBConnect function in the

interface control block. For information about the data space vector parameter,

refer to page 62.

Input to the dequeue routine

This routine is serially reusable per queue. If the application program attempts to

overlap execution of this routine, the results are unpredictable.

General registers

Explanation

0 Value of the field RIV10NMI in the ISTRIV10_t structure filled in by

MIBConnect.

1 Unused

2-13 Undefined

14 Return address

15 Entry point address

Access registers

Explanation

0 Undefined

1 ALET for interface data space

2-15 Zero

Output for dequeue routine

General registers

Explanation

0 Count of remaining buffers

1 Address of buffer that is in the data space or zero if no buffer exists

2-13 Restored to input values

14 Return address

15 Return code:

0 Buffer is dequeued. The address is in register 1.

8 No buffers available.

16 VTAM is terminating. The application program’s TPEND exit

routine is driven. Do not continue calling the interface routines.

Cease all reference to interface control blocks.

92 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Access registers

Explanation

0 Undefined

1 ALET for interface data space

2-14 Restored to input value

15 Undefined

Releasing a buffer with the release routine

To release a previously dequeued buffer, the application program must call the

release routine. The release routine address is returned on the MIBConnect

function in the interface control block. For information about the data space vector

parameter, refer to page 62.

This module is serially reusable per queue. If the application program attempts to

overlap execution of this module, the results are unpredictable.

Input to the release routine

General registers

Explanation

0 Value of the field RIV10NMI in the ISTRIV10_t structure filled in by

MIBConnect.

1 Address of buffer to be released

2-13 Undefined

14 Return address

15 Entry point address

Access registers

Explanation

0 Undefined

1 ALET for interface data space

2-15 Zero

Output to the release routine

General registers

Explanation

0-1 Undefined

2-13 Restored to input values

14 Return address

15 Return code:

0 Buffer released.

16 VTAM is terminating. The application program’s TPEND exit

routine is driven. Do not continue calling the interface routines.

Cease all reference to interface control blocks.

Chapter 6. Dequeue and release routines for data space storage 93

Access registers

Explanation

0 Undefined

1 ALET for interface data space

2-14 Restored to input value

15 Undefined

Abnormal exits

If the buffer being released is either not allocated or is incorrect, the results are

unpredictable.

94 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 7. Rules for constructing standard CMIP strings

This section describes how to look at the ASN.1 source files and read the syntax to

enable you to build a string that can be sent to CMIP services. Almost all of the

data types supported by ASN.1 are supported by VTAM CMIP services. VTAM

CMIP services does not support the following data types:

v GraphicString (except for the default character set, which is supported)

v TeletexString and VideotexString

v EXTERNAL data type

v Contained subtypes

v Inner subtyping

v Real value

v Constructed value

v Named bit strings

Overview

CMIP services includes a management information base (MIB) application program

interface (API), which application programs use to send information to CMIP

services. Application programs send data to CMIP services by using API functions,

which are described under Chapter 3, “Overview of CMIP services API functions,”

on page 41. The data sent in some of the parameters of the API functions can be in

any format that is accepted as standard ASN.1 syntax. ASN.1 syntax is the data

definition language used by OSI management.

This section describes how application programs can send data to CMIP services

(using the API functions) and how CMIP services sends data to application

programs.

The application program can send strings that are composed of values that are

specified according to the rules in the ASN.1 syntax. For a particular ASN.1 syntax,

an application program has some flexibility in the exact format of a string.

CMIP services returns information to application programs in a specific format. For

example, when the application program sends a string to CMIP Services that

includes a BOOLEAN value, the application program can use a variety of formats.

But when CMIP services sends a BOOLEAN value in a string to the application

program, CMIP services uses only one format for BOOLEAN values.

How application programs format data to be sent to CMIP services

When calling the MIBSendRequest or MIBSendResponse functions, the application

program provides a zero-terminated string that includes the following:

v The word msg

v A blank

v The name of an ASN.1 module

v A period

v The name of a type within that ASN.1 module

v Values for all of the fields associated with that type

© Copyright IBM Corp. 1995, 2005 95

For example, the following zero-terminated string could be passed as the fourth

parameter to the MIBSendRequest function.

"msg ACF.Release (a1)"

When calling the MIBSendCmipRequest or MIBSendCmipResponse functions, the

application program provides a zero-terminated string that includes only the

values for all of the fields associated with the type listed in the ANY DEFINED BY

table for the specified operation-value or error-value.

For example, to send a GET request by the MIBSendCmipRequest function, the

second parameter of the MIBSendCmipRequest function should be three

(operation-value for GET) and the third parameter of MIBSendCmipRequest

function could be the following zero-terminated string:

"(baseManagedObjectClass 2.9.3.2.3.13,"

" baseManagedObjectInstance "

" (distinguishedName "

" ’1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name GEORGE)’),"

" attributeIdList (2.9.3.2.7.35,2.9.3.2.7.5))"

Each value is made up of a <label> <value> pair. The <label> is the identifier that

appears in ASN.1 NamedTypes. See clause 12.5 of ISO-8825 for the formal

definition of a NamedType.

In the following example, a, b, and c are possible labels. For the field with data

type D, the type name is used as a label. Using the type name as a label is

necessary only when the ASN.1 syntax was defined without labels for all SET and

SEQUENCE fields. If the type name is used for a data type that has a label, the

type name is rejected.

 A ::= SEQUENCE

 {

 a INTEGER,

 b OBJECT IDENTIFIER,

 c C,

 D

 }

Labels can always be specified, but they are required only to resolve ambiguity in

the ASN.1 definition. Because it is difficult to know when ambiguity exists, use the

following rules when building strings to send to CMIP services:

v Labels are required on members of a SET construct, because the members of the

SET can be specified in any order.

v A label is required to resolve a CHOICE; otherwise CMIP services cannot

determine which choice was selected by the application program.

v It is recommended that members of a SEQUENCE be identified with a label.

Labels are required only in situations where an optional member is intentionally

omitted and subsequent members follow. However, unless every member of a

sequence is specified, or the optional members that are intentionally omitted are

located at the end of the SEQUENCE, it is simpler to identify all members with

a label.

v Elements of a SET and SEQUENCE and the element of a CHOICE are

surrounded by parentheses.

The <value> portion of the <label> <value> pair can be specified in the following

ways:

v Primitive data types, such as BOOLEAN and INTEGER, that are not composed

of one or more instances of other data types

96 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

v Constructed data types, such as SEQUENCE and SET

v Hexadecimal basic encoding rules (BER), which can be used for all ASN.1 types

except CHOICE and ANY DEFINED BY.

Any of the five following formats are recognized by CMIP services, but CMIP

services always returns explicit value notation if there are no insurmountable

errors encountered during the decoding of incoming strings. If errors are

encountered, the hexadecimal BER format explained in “Hexadecimal BER format”

on page 100 is used.

Explicit value format

In the explicit value format, the actual value of the primitive data type is given.

For example, an application program can specify 1234 as the value of an INTEGER

data type. Each of the primitive data types has a unique explicit value notation

and these are explained in “Primitive ASN.1 data types” on page 101. Examples

are TRUE and FALSE for BOOLEAN types, -3.125 for REAL types, and 1001001 for

BIT STRINGS.

Values can be formatted and sent to the API enclosed in single or double quotation

marks. Quotation marks are required if the value contains a space. Use the same

kind of quotation mark to begin and end the value. The quotation marks are

ignored by CMIP services.

ASN.1 value format

The value format is based on an ASN.1 module, as shown in the following

example.

 A ::= INTEGER

 a INTEGER ::= 1

 b INTEGER ::= 2

 c INTEGER ::= 3

 d A ::= 4

 B ::= SET {

 f [1] INTEGER,

 g [2] INTEGER,

 h [3] INTEGER

 }

 C ::= SEQUENCE {

 f [1] INTEGER,

 g [2] INTEGER,

 h [3] INTEGER

 }

Values for A may be specified as:

 a

 b

 d

 12

Values for B may be specified as:

 (f a, h d, g 34)

 (h 138, f d, g 34)

Values for C may be specified as:

 (c, 12, 19)

 (f c, 12, h 19)

 (f c, g 12, h 19)

The application program can specify a, b, c, or d as the <value> portion of a

<label> <value> pair. If the value appears in a context that might be ambiguous,

Chapter 7. Rules for constructing standard CMIP strings 97

such as for the value of the g field in the SET B, the appropriate <label> must

accompany the <value>. The labels can be omitted when specifying values for C,

because there is no ambiguity. The labels can never be omitted when specifying

values for B, because A is optional and without a label for B, it is not possible to

determine whether the value is for A or B.

CMIP services, using information from the compiled ASN.1 modules, verifies that

the value and type are compatible.

MIB variable format

MIB variables are values that can be set in CMIP services by an object, and then

referred to later in a string. These values can be specified as MIB variables by the

application program in any string. CMIP services substitutes the actual values.

MIB variables are denoted with an ampersand (&) as the first character of the

variable name. The API checks to make sure that the type of the MIB variable and

the type of the type reference are compatible.

CMIP services includes a set of predefined MIB variables that can be used in any

string, by any object:

&DN Represents the distinguished name of the originator of a string that is

passed to the API. The API uses its knowledge of the source of the string

to provide the appropriate distinguished name. The name can be used by

an object that is registered with CMIP services to identify itself when it

sends a string. The API supplies the distinguished name that corresponds

to the local identifier provided on the request.

&IID Represents the invoke identifier of the current string. This can be used in a

response or when initiating a request. On requests, this MIB variable

allows the sender of a string to build the string without knowing the

invoke identifier. For all requests, the invoke identifier is not required

because the MIB functions assign the invoke identifier after they receive

the string. Therefore the API can fill in the value for the invoke identifier

once it has been assigned.

>M

Represents the current time in Generalized time format. For more

information, refer to “Time types” on page 112.

yyyy/mm/dd-hh:mm:ss.0

&UTM

Represents the current time in Universal time format. For more

information, refer to “Time types” on page 112.

yyyy/mm/dd-hh:mm:ss.0

&OC Represents the managed object class of the originator of the string. This

variable allows the application program to use generic strings in

responding to requests, without having to customize them for each object

class it supports. In any response from an unregistered object or when

allomorphism is being exercised, this variable cannot be used.

The following example shows how to use these MIB variables:

 Arg =

 "(managedObjectClass &OC, "

 " managedObjectInstance (distinguishedName &DN), "

 " currentTime >M, "

 " attributeList ((attributeId 2.9.3.2.7.5, "

98 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

" (distinguishedName "

 " (((attributeType 1.3.18.0.2.4.6, "

 " attributeValue MYNETID), "

 " (attributeType 2.9.3.2.7.4, "

 " attributeValue (name \"MYCPNAME\")))))),"

 " (attributeId 2.9.3.2.7.35, enabled) "

 ") "

 ") ";

 rc = MIBSendCmipResponse(LinkId,

 OldInvokeId,

 1, /* last in chain */

 1, /* success */

 3, /* GET response */

 Arg,

 LocalId_ptr,

 NULL,

 OldAssocHandle,

 NULL);

CMIP Services substitutes the appropriate values for the variables &OC, &DN, and

>M.

Note: The many extra spaces in the response string will be ignored by CMIP

services, though they will lead to extra processing overhead.

Constructed value format

The constructed types, SET, SEQUENCE, SET OF, and SEQUENCE OF and the

CHOICE types use constructed value format. In this format, the value of a <label>

<value> pair is surrounded by parentheses and contains other <label> <value>

pair specifications separated by commas, as is shown in the following ASN.1

definition:

 A ::= SEQUENCE

 {

 a INTEGER,

 b BIT STRING,

 c BOOLEAN

 }

The invoking application program specifies the following across the API:

 (a 12, b 11011011, c TRUE)

To nest constructed data types, use multiple sets of parentheses. Note that the

number of parentheses does not correspond directly to the number of braces in the

ASN.1. It corresponds to the number of constructed data types that occur. For

example, an application program could specify

 (a 12, b (1, 2, 3, 4), c TRUE, d (111, 1101110, 11000))

to be sent to the API to correspond to the following ASN.1 definition:

 A ::= SEQUENCE

 {

 a [0] INTEGER DEFAULT 0,

 b [1] SEQUENCE OF INTEGER,

 c [2] BOOLEAN OPTIONAL,

 d [3] B

 }

 B ::= SEQUENCE OF C

 C ::= BIT STRING

Chapter 7. Rules for constructing standard CMIP strings 99

The numbers specified in square brackets in the ASN.1 of the previous example

refer to the tagging that is used when exchanging strings between systems.

Because the identifier of the named type (in this case, a, b, c, or d) corresponds

not only to the type reference but also to the tagging, it is not necessary to specify

the tagging across the API. Tags are determined automatically by CMIP services.

The words DEFAULT and OPTIONAL in an ASN.1 definition indicate that those

fields can be omitted in an instance of type reference A. DEFAULT means the field

a can be omitted. If it is omitted, CMIP services interprets the field as having a

value the default value specified in the syntax. In the previous example, zero is

assigned to the field with label A. If it is not omitted, CMIP services does not

assign DEFAULT fields default values. Application programs that receive strings

containing DEFAULT fields must be able to understand and interpret the omission

of the field.

OPTIONAL means that the field c does not have to be specified. When it is not

specified, CMIP services does not interpret the field.

Hexadecimal BER format

Hexadecimal BER format is the hexadecimal value contained in the BER, enclosed

in angle brackets. Hexadecimal BER format is the final format that can be used to

specify a value. In some cases when CMIP services cannot decode a string sent by

another CMIP services, CMIP services sends the string to the application program

in hexadecimal BER format.

In this format, the value is enclosed in less than (<) and greater than (>) symbols,

and consists of zero or more hexadecimal digits. In all but one case, the

hexadecimal digits represent the BER encoding of the <value> portion of a

particular field. For example, the value of a BOOLEAN in BER is specified as a

single octet, with nonzero values representing true. An octet is a byte. To specify a

true value for field fred to the API in hexadecimal BER format, the application

program specifies:

... fred <01> ...

When specifying a value for an ANY type, the application program is required to

specify the entire BER field, including the tag, length, and value portions. It cannot

specify only the value, because the ANY type cannot understand what the possible

types are. For example, if the same application program specifies a BOOLEAN

value of true to the API for a field called fred that is an ANY type, the following

should be specified:

... fred <010101> ...

In this example, the first octet represents the tag, which is a universal tag for

BOOLEAN. For a full description of how BER tags are encoded see the BER

standard.

The second octet represents the length of the value portion, a length of 1 octet, and

the value is as specified previously.

An application program should not use hexadecimal BER when sending

information to the API, because error and subtype checking that is normally

performed by the API code is not applied to the BER value. The value is assumed

to be correctly formed and is inserted into the BER buffer at the appropriate

location.

100 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Another potential problem is the use of the hexadecimal BER format for ANY

types, because improper tags and lengths can be introduced. Hexadecimal BER

format is necessary when an INTEGER that is longer than four octets needs to be

shipped. Hexadecimal BER allows the application program to circumvent any

limitations imposed by the API, but you might encounter problems.

When CMIP services receives strings from an application program, CMIP services

attempts to decode the strings into a combination of explicit values and

constructed values. During decoding, if CMIP services encounters an error in a

primitive data type, CMIP services sends to the application program the value for

that type in hexadecimal BER format. For example, if the contents of an INTEGER

field are too large to fit within four octets, CMIP services sends the application

program the INTEGER value in hexadecimal BER format.

If CMIP services encounters an error in a constructed data type or a decision data

type, such as ANY DEFINED BY or CHOICE, CMIP services sends the application

program the entire contents of the constructed or decision type in a single

hexadecimal BER value. For example, if CMIP services does not recognize the

value of an OBJECT IDENTIFIER, the OBJECT IDENTIFIER value is sent to the

application program in hexadecimal BER format.

Primitive ASN.1 data types

Primitive types within ASN.1 are those types that are not constructed or cannot be

broken down into more primitive types. They correspond to the normal data types

encountered in many programming and data definition languages.

The term primitive type should not be confused with primitive encoding as defined in

the BER standard. Some primitive types, such as BIT STRINGs, can actually be

encoded in a constructed manner. However, in this case, all of the components

must be of the same type as the constructed BIT STRING.

The following sections describe:

v How an application program sends the type to CMIP services

v How CMIP services sends the type to an application program

BOOLEAN type

BOOLEAN types can have one of two values: true or false.

How an application program sends a BOOLEAN value to CMIP

services

An application program can send a BOOLEAN value to CMIP services in any of

the following forms:

��

label
 TRUE

true

FALSE

false

(1)

value

(1)

variable

(2)

<hex value

>

 ��

Chapter 7. Rules for constructing standard CMIP strings 101

Notes:

1 Values and variables specified in this position must resolve to a BOOLEAN

value.

2 When specifying a value in this format, be aware that the BER representation

consists of a single octet, with X'00' representing false, and any other value

representing true.

An application program can specify a BOOLEAN value as shown in the following

examples:

TRUE

FALSE

true

false

How CMIP services sends a BOOLEAN value to an application

program

CMIP services sends one of the following BOOLEAN values:

v TRUE

v FALSE

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

INTEGER type

INTEGER types represent integer numbers. An INTEGER value can be either

positive or negative. INTEGER values are expressed as the explicit value of the

integer, which is the actual value of the integer. For example, an application

program can specify 1234 as an INTEGER value. The minimum value is

-2147483648; the maximum value is 2147483648.

How an application program sends an INTEGER value to CMIP

services

An application program can send an INTEGER value to CMIP services in any of

the following forms:

��

label
 digits

+

−

(1)

named number

(2)

value

(2)

variable

<hex value>

 ��

Notes:

1 The ASN.1 compiler recently introduced support for named numbers, and

this support is expected to be added to the API in the very near future. When

it is, the API will output named integer values by giving the value identifier.

102 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

2 Values and variables specified in this position must resolve to an INTEGER

value.

The following example shows how the ASN.1 syntax might define an INTEGER

value.

X ::= INTEGER

SlowModemSpeed ::= INTEGER {

 slowest (300),

 slower (1200),

 slow (2400)

 }

A value for X would be:

 123

Values for SlowModemSpeed would be:

 300

 2400

How CMIP services sends an INTEGER value to an application

program

CMIP services sends INTEGER values as strings of decimal digits, possibly

preceded by a minus sign (−). INTEGER values are always represented by their

numeric values.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description. For example, if CMIP

services encounters an INTEGER value longer than four octets, CMIP services

sends the value to the application program in hexadecimal BER format.

ENUMERATED type

The values for ENUMERATED types are expressed as explicit values that are

symbolic, rather than numeric.

How an application program sends an ENUMERATED value to

CMIP services

An ENUMERATED can be formatted and sent to CMIP services in the following

forms:

��

label
 enumeration

(1)

value

(1)

variable

<hex value>

 ��

Notes:

1 Values and variables specified in this position must resolve to an

ENUMERATED value.

The following example shows how the ASN.1 syntax might define an

ENUMERATED value.

Chapter 7. Rules for constructing standard CMIP strings 103

X ::= ENUMERATED {

 val1 (0),

 val2 (1),

 val3 (2)

 }

Values for X would be:

 val1

 val3

How CMIP services sends an ENUMERATED value to an

application program

CMIP services sends an ENUMERATED value as a symbolic ASCII string that

corresponds to the value found in the BER.

ENUMERATED values are always represented by the name of the value, not the

corresponding integer value.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

REAL type

REAL types represent real values.

How an application program sends a REAL value to CMIP

services

An application program can send a REAL value to CMIP services in any of the

following forms:

��

label
 mantissa

+

E

exponent

−

+

−

 ��

The application program is required to use the hexadecimal BER format for

specifying REAL values.

The following example shows how the ASN.1 syntax might define a REAL value.

X ::= REAL

Values for X would be:

 "3.14"

 "0.0"

 "-14.33e-05"

How CMIP services sends a REAL value to an application

program

CMIP services sends REAL values to an application program in the following

format:

104 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

�� label mantissa

+

E

exponent

−

+

−

 ��

CMIP services places labels in the string for all elements of the syntax that are

present.

Under the OS/2® operating system, CMIP services sends REAL values according to

the criteria used for the output of %lg in printf(). CMIP services sends the smallest

number of characters that can be used to represent the number.

If CMIP services cannot decode the value or if CMIP services exists on an

operating system other than OS/2, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

BIT STRING type

The BIT STRING type represents a string of bits. There is no limit to the length of

the string.

How an application program sends a BIT STRING to CMIP

services

An application program can send a BIT STRING to CMIP services in any of the

following forms:

��

label

�

 ″″

.

1

0

(1)

value

(1)

variable

(2)

<hex value

>

 ��

Notes:

1 Variables specified in this position must resolve to a BIT STRING.

2 When specifying a value in this format, remember that the BER

representation of a BIT STRING always begins with an octet that signifies the

number of unused bits in the final octet of the value. Omitting this extra octet

results in decoding errors by the receiver.

The bit strings are sent to CMIP services as part of a character string, using the

characters B'1' and B'0' to represent on and off. The application program can also

specify a null BIT STRING by entering two quotation marks, either single ('') or

double (""). A null BIT STRING has a length of zero.

How an application program specifies a BIT STRING value

The following example shows how the ASN.1 syntax might define a BIT STRING.

Chapter 7. Rules for constructing standard CMIP strings 105

X ::= BIT STRING {

 val1 (0),

 val2 (1),

 val3 (2)

 }

Values for X would be:

 001 — means val3 is turned on, the others are off

 100 — means val1 is turned on, the others are off

 111 — val1, val2, val3 are all on

How CMIP services sends a BIT STRING to an application

program

CMIP services sends BIT STRINGs as strings of digits, without enclosing them in

quotation marks. When CMIP services receives a null BIT STRING from an

application program, CMIP services sends the null BIT STRING as two double

quotation marks.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value for a BIT STRING, including null BIT

STRINGS, CMIP services sends the value to the application program in

hexadecimal BER format, enclosed in delimiters. See “Hexadecimal BER format” on

page 100 for a description.

OCTET STRING type

The OCTET STRING type represents a string of hexadecimal digits.

How an application program sends an OCTET STRING to CMIP

services

An application program can send an OCTET STRING to CMIP services in any of

the following forms:

��

label
 ″″

(1)

string of hexadecimal digits

(2)

value

(2)

variable name

<hex value>

 ��

Notes:

1 The formatted string to be sent to CMIP services must have an even number

of hexadecimal digits.

2 Variables specified in this position must resolve to OCTET STRINGs.

An application program can send OCTET STRINGs to CMIP services as strings of

an even number of hexadecimal digits, using the character representation of the

hexadecimal digits '0' through '9' and 'A' through 'F'. Both uppercase and lowercase

letters can be used. When CMIP services returns the OCTET STRING, CMIP

services uses uppercase letters.

Application programs can have OCTET STRINGs that have a length of zero. Such

OCTET STRINGS are null OCTET STRINGs. For null OCTET STRINGs, the

106 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

application program should format the string with two quotation marks with no

intervening characters. The application program can specify either single or double

quotation marks.

An application program can also specify OCTET STRINGs as hexadecimal BER,

although this format is essentially the same as the explicit value format, with

different delimiters.

How an application program specifies an OCTET STRING

The following example shows how the ASN.1 syntax might define an OCTET

STRING.

X ::= OCTET STRING (SIZE(2))

If X has a hexadecimal value of 01AB, the string passed to or from the

API is:

 F0F1C1C2

How CMIP services sends an OCTET STRING to an application

program

CMIP services sends an OCTET STRING in explicit value format. CMIP services

sends a null OCTET STRING as two double quotation marks when it sends the

string.

CMIP services places labels in the string for all elements of the syntax that are

present.

NULL type

A NULL type is used for optional input parameters for which the application

program does not specify a value.

How an application program sends a NULL value to CMIP

services

An application program can send a NULL value to CMIP services in any of the

following forms:

��

label
 null

NULL

(1)

value

(1)

variable

(2)

<hex value

>

 ��

Notes:

1 Variables specified in this position must resolve to NULL.

2 When specifying a value in this format, remember that the BER

representation of a NULL consists only of a tag and length field that indicates

tha the length is zero. Therefore, the proper representation of hexadecimal

BER should be “<>”.

An application program can specify a NULL value by specifying:

v The character string NULL

v An ASN.1 value label that resolves to a NULL value

v A MIB variable that resolves to a NULL value

Chapter 7. Rules for constructing standard CMIP strings 107

How an application program specifies a NULL value

The following example shows how the ASN.1 syntax might define a BIT STRING

value.

X ::= NULL

The value for X is:

 NULL

How CMIP services sends a NULL value to an application

program

CMIP services sends a NULL value as the uppercase string NULL.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

OBJECT IDENTIFIER type

OBJECT IDENTIFIERs (OIs) serve within OSI management as universally unique

codepoints to represent object classes, specific values, or identities of registered

parts of an object class.

How an application program sends an OBJECT IDENTIFIER to

CMIP services

An application program can send an OBJECT IDENTIFIER to CMIP services in any

of the following forms:

��

label
 object identifier

(1)

value

(1)

variable

<hex value>

 ��

object identifier:

�

 .

0

.

component

1

2

Notes:

1 Variables specified in this position must resolve to an OBJECT IDENTIFIER.

An application program sends an OBJECT IDENTIFIER to CMIP Services by using

an explicit value. OBJECT IDENTIFIERs are specified as text strings of integers

separated by periods as in 1.3.18.0.0.6. Each of the numbers of the OBJECT

IDENTIFIER must resolve to a long integer. An OBJECT IDENTIFIER must contain

at least two numbers in an OBJECT IDENTIFIER, but there is no maximum

number of components. The first number must be either 0, 1, or 2.

108 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

How an application program specifies an OBJECT IDENTIFIER

value

The following example shows how the ASN.1 syntax might define an OBJECT

IDENTIFIER.

X ::= OBJECT IDENTIFIER

Values for X would be:

 1.2.3.4.5.6

 1.3.18.0.0.255

 2.9.3.2.6.18

How CMIP services sends an OBJECT IDENTIFIER to an

application program

CMIP services sends an OBJECT IDENTIFIER as an explicit value.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

Character string types

Different types of character strings can be formatted and sent to the API. Four of

the string types defined in the ASN.1 standard are supported:

v NumericString

v PrintableString

v VisibleString (also known as ISO646String)

v GraphicString

The GraphicString type is the same as the ISO646String type. The application

program can specify character sets other than those supported by VTAM CMIP

services by using the hexadecimal BER format (see “Hexadecimal BER format” on

page 100).

How an application program sends a character string to CMIP

services

An application program can send a character string value to CMIP services in as

normal text strings, according to the following format:

��

label

 (1) (2) (1)

character string

″

″

’

’

(3)

value

(3)

variable

<hex value>

��

Notes:

1 Quotation marks are especially important when specifying values of character

strings, because character strings are one of the few places where special

characters are valid. Quotation marks are needed if any special characters

such as spaces, parentheses, or commas are included in the value.

Chapter 7. Rules for constructing standard CMIP strings 109

2 The characters that can be specified in this string are dictated by the ASN.1

type of the string. See the text for an explicit listing of the allowable

characters.

3 Variables specified in this position must resolve to a hexadecimal or character

string.

An application program can send a character string to CMIP services with or

without quotation marks depending on whether the string contains special

characters.

Valid characters for character strings

The characters that can be specified in the string types are defined in ISO-8824, the

ASN.1 standard.

Valid characters for NumericString type

 Table 4. Valid characters for NumericString

Character name Glyph

Digits 0-9

Space

Valid characters for PrintableString type

 Table 5. Valid characters for PrintableString

Character name Glyph

Uppercase letters A-Z

Lowercase letters a-z

Digits 0-9

Space

Apostrophe ’

Left parenthesis (

Right parenthesis)

Plus sign +

Comma ,

Hyphen -

Full stop .

Solidus /

Colon :

Equal sign =

Question mark ?

Valid characters for GraphicString and ISO646String

 Table 6. Valid characters for GraphicString and ISO646String

Character name Glyph

Uppercase letters A-Z

Lowercase letters a-z

Digits 0-9

110 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 6. Valid characters for GraphicString and ISO646String (continued)

Character name Glyph

Space

Exclamation mark !

Quotation mark '

Number sign #

Dollar sign $

Percent sign %

Ampersand &

Apostrophe ’

Left parenthesis (

Right parenthesis)

Asterisk *

Plus sign +

Comma ,

Hyphen -

Full stop .

Solidus /

Colon :

Semicolon ;

Less than sign <

Equals sign =

Greater than sign >

Question mark ?

Commercial at @

Left square bracket [

Reverse solidus \

Right square bracket]

Upward arrow head ^

Underline _

Grave accent `

Left curly bracket {

Vertical line |

Right curly bracket }

Overline ‾

Composite graphics, which are those constructed with backspaces in a

GraphicString, are not allowed.

If a character that is not valid is entered on encoding, the string is rejected and an

error code is returned to the application program. On decoding, characters that are

not valid are accepted and translated to periods.

Chapter 7. Rules for constructing standard CMIP strings 111

How CMIP services sends a character string to an application

program

When CMIP services sends character strings, if the value contains the double

quotation mark (″) character, CMIP services encloses the value in single quotation

marks. If the string does not contain the double quotation mark character, CMIP

services encloses the value in double quotation marks.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

Time types

Two time specifications are supported by the API: GeneralizedTime and

UniversalTime.

How an application program sends a TIME value to CMIP

services

An application program can send a TIME value to CMIP services for either type of

time is in the following forms:

��

label
 YYYY/MM/DD-HH:MM:SS

.T

Z

+HH:MM

-HH:MM

<hex value>

 ��

where the initial fields correspond to the year (4 digits), month, day, hours

(specified using the 24-hour clock), minutes, and seconds. The additional fields are

optional and can be included if the sender chooses. These represent the tenths of a

second (.T), the type of the time (Z indicates GMT, + or - indicates a GMT offset

and nothing indicates local time).

The entire non-hexadecimal value can be enclosed in quotation marks, as can any

other string value, if the sender wishes.

How CMIP services sends a TIME value to an application

program

CMIP services sends a TIME value in the same format that the application

program uses to send a TIME value to CMIP services. See “Hexadecimal BER

format” on page 100 for a description.

Constructed ASN.1 types

Constructed types are those that combine similar or different primitive types into

ordered or unordered groups. VTAM CMIP services represents the members of

constructed types by enclosing the members in parentheses. There are four

constructed types. Whether a type can contain members of different types and

whether order is important depends on the constructed type.

112 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 7. Order and members of constructed types

Constructed type Members Order

SET Members can be different types. Order of members is not

important.

SEQUENCE Members can be different types. Order of members is important.

SET OF All members must be the same

type.

Order of members is not

important.

SEQUENCE OF All members must be the same

type.

Order of members is important.

The hexadecimal BER format can also be used for constructed types. When the

hexadecimal BER format is used, either the members of the constructed type can

be specified as BER or the entire contents of the SET or SEQUENCE can be

specified in a single value. For example, given the following ASN.1:

A ::= SEQUENCE

{

 a INTEGER,

 b INTEGER,

 c INTEGER

}

any of the following values may be specified:

(a 1, b 2, c 3)

(a <01>, b <02>, c <03>)

<020101020102020103>

The former value specification is preferred, because CMIP services can check that

the values that are specified are valid and CMIP services can construct the correct

encoding of the tags, lengths, and values.

How CMIP services sends a constructed type to an application

program

CMIP services sends constructed values according to the format used for the

primitives that make up the constructed types. For example, if the SET value is

comprised of INTEGER values, CMIP services sends the values in the same format

that CMIP services sends INTEGER values. Values are enclosed in parentheses and

can have commas between them.

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description.

For example, if an unrecognized member occurs in a SEQUENCE or a duplicate

member occurs in a SET, the entire contents of the constructed type is returned as

a single hexadecimal string.

SEQUENCE

A SEQUENCE is common in ASN.1. The number and order of members of the

SEQUENCE are dictated by the ASN.1 definition of the SEQUENCE.

Chapter 7. Rules for constructing standard CMIP strings 113

An application program can send a SEQUENCE to CMIP services in any of the

following forms:

��

label

�

 ,

(

)

value

(1)

label

(2)

<hex value

>

��

Notes:

1 Labels are required only if an optional element of the sequence is omitted and

a subsequent member is included.

2 When specifying a value in this format, the application program is required

to specify the entire contents of the SEQUENCE, including the tags and

lengths of the members, but not the tag and length of the SEQUENCE itself.

Whether a particular member is required to be included depends on whether the

ASN.1 definition indicates that it is optional. It does not depend on CMIP services.

SET

A SET is an unordered collections of members in ASN.1, and CMIP services

implements this definition by allowing the input of members of the set in any

order. Because members can be in any order, CMIP services requires that labels be

specified on all SET members.

An application program can send a SET to CMIP services in the following form,

which is similar to that for a SEQUENCE:

��

label

�

 ,

(

)

label

value

(1)

<hex value

>

��

Notes:

1 When specifying a value in this format, the application program is required

to specify the entire contents of the SET, including the tags and lengths of the

members, but not the tag and length of the SET itself.

As with a SEQUENCE, whether a particular member is required to be included is

determined by whether the ASN.1 definition indicates that it is optional. It does

not depend on CMIP services. Note that labels are required on members of a SET.

SET OF and SEQUENCE OF types

The SET OF and SEQUENCE OF types represent one or more instances of a SET or

a SEQUENCE. For a description of the differences among constructed types, refer

to Table 7 on page 113.

114 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

An application program can send a SET OF or SEQUENCE OF value to CMIP

services in the following form:

��

label

�

 ,

(

)

value

label

(1)

<hex value

>

��

Notes:

1 When specifying a value in this format, the application program is required

to specify the entire contents of the SET OF or SEQUENCE OF, including the

tags and lengths of the members, but not the tag and length of the SET OF or

SEQUENCE OF itself.

There is no limitation (other than subtyping specified in the ASN.1) as to the

number of members that can be specified in the SET OF or SEQUENCE OF. It is

valid to specify a SET OF or SEQUENCE OF with no members, so long as subtype

constraints are obeyed.

Decision types

Three ASN.1 types allow the application program to include different pieces of

information, even after the ASN.1 definition is complete. They allow the

application program to determine, at execution time, what information should fall

within certain fields. VTAM CMIP services calls these types decision types, and they

include CHOICE, ANY and ANY DEFINED BY.

Note that the hexadecimal BER format is not supported for CHOICE and ANY

DEFINED BY types. If the application program needs to specify the latter as BER,

the entire SEQUENCE that contains the ANY DEFINED BY must be specified as a

single BER value.

CHOICE types

A CHOICE type is one in which a decision must be made concerning the next type

to include in a string. When receiving incoming strings to be decoded, the

determination of which CHOICE to take is based on the tagging in the transfer

syntax. In CMIP services, the choice is based on the resolution label presented in the

string when the CHOICE is encountered. The resolution label is the identifier of

each of the NamedTypes in the CHOICE construct.

How an application program sends a CHOICE to CMIP services

An application program can send a CHOICE to CMIP services in any of the

following forms:

�� (resolution label value)

label
 ��

Note: The resolution label is always required.

How an application program specifies CHOICE values

The following example shows how the ASN.1 syntax might define a CHOICE.

Chapter 7. Rules for constructing standard CMIP strings 115

A ::= CHOICE

 {

 x INTEGER,

 y OBJECT IDENTIFIER,

 z OCTET STRING

 }

The application program can choose to have field b be an INTEGER, an OBJECT

IDENTIFIER, or an OCTET STRING. If the application program chooses for it to be

an INTEGER, the following string should be specified:

 b (x 1234)

where the x is the resolution label.

How CMIP services sends a CHOICE to an application program

So long as the alternative described in the BER exists within the CHOICE, CMIP

services sends the CHOICE in the same format an application program uses to

send a CHOICE to CMIP services. (An alternative is one of the options specified in

the CHOICE syntax.)

CMIP services places labels in the string for all elements of the syntax that are

present.

If CMIP services cannot decode the value, CMIP services sends the value to the

application program in hexadecimal BER format, enclosed in delimiters. See

“Hexadecimal BER format” on page 100 for a description. For example, if CMIP

services does not recognize the alternative, CMIP services sends a CHOICE as

hexadecimal BER.

ANY DEFINED BY types

How an application program sends an ANY DEFINED BY value to

CMIP services

An application program can send an ANY DEFINED BY value to CMIP services

according to the method used to send the type to which the ANY DEFINED BY

resolves. The label of the input corresponds to the label of the ANY DEFINED BY

construct in the ASN.1, and the value corresponds to the value of the type to

which the ANY DEFINED BY resolves. The resolution field determines which type

to translate.

How an application program specifies ANY DEFINED BY values

The following example shows how the ASN.1 syntax might define an ANY

DEFINED BY value.

 A ::= INTEGER

 B ::= BIT STRING

 C ::= BOOLEAN

 X ::= SEQUENCE

 {

 a INTEGER,

 b ANY DEFINED BY a --% ANY_TABLE_REF (Y)

 }

--% Y ANY_TABLE ::=

--% {

--% 1 A,

--% 2 B,

--% 3 C

--% }

116 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Given this ASN.1, if one wanted to have member b of type X be a bit string, field a

must have a value of 2 (as defined by the ANY DEFINED BY resolution table Y).

Therefore, an application program formats and sends to CMIP services the

following:

ANY types

The ANY type in ASN.1 carries no tagging information and can resolve to any

other ASN.1 type. Because an unknown set of different types can be used to

resolve an ANY, the API must be told about the tag to be used.

How an application program sends an ANY value to CMIP

services

An application program can send an ANY value to CMIP services in the following

form:

��

label

 (1)

<hex value

>

��

Notes:

1 The hexadecimal value specified in this position must include the tag and

length fields of the BER. Note that this is different from the hexadecimal

values specified for other types.

The only valid format for an application program to use for an ANY value is

hexadecimal BER.

How CMIP services sends an ANY value to an application

program

CMIP services sends an ANY value in hexadecimal BER format. It is important to

note that the hexadecimal value for an ANY value includes the tag and length

portions of the BER, in contrast to the hexadecimal BER formats of the other types.

CMIP services places labels in the string for all elements of the syntax that are

present.

Additional examples of how application programs send data

The following examples demonstrate how an application program can send

primitive types and the more complex ASN.1 data types.

The first examples are based on the following ASN.1 module:

Abc DEFINITIONS IMPLICIT TAGS ::= BEGIN

 A ::= BOOLEAN

 B ::= INTEGER

(a 2, b 111011011)

A BIT STRING — because the type must be B : : = BIT STRING
The label for the second element of the SEQUENCE X

The label for the first element of the SEQUENCE X

The value of the first element of SEQUENCE X

Because this is 2, the type of the second element of x
must be B (from ANY TABLE Y) which is a BIT STRING

Figure 4. Defining a bit string field

Chapter 7. Rules for constructing standard CMIP strings 117

C ::= ENUMERATED {a(0), b(2), c(5), d(10)}

 D ::= REAL

 E ::= BIT STRING

 F ::= OCTET STRING

 G ::= NULL

 H ::= OBJECT IDENTIFIER

 a A ::= TRUE

 b B ::= 12

 c C ::= 10

 e E ::= B’10010’

 f F ::= H’1234567890’

 g G ::= NULL

 h H ::= { iso icd(3) 18 0 0 6 }

END

The following are all valid input strings:

 Module Type String

Abc A TRUE

Abc A false

Abc A a

Abc B -12345

Abc B 0

Abc B 500000

Abc B b

Abc C b

Abc C c

Abc D 3.125

Abc D -12E25

Abc E 11011011010

Abc E ″″

Abc E e

Abc F 1234567890123456

Abc F f

Abc F ″″

Abc G NULL

Abc G g

Abc H 1.3.18.0.3

Abc H 0.0

Abc H 1.2.5.355465.2.1

Abc H h

The second set of examples show how to specify some constructed data types. This

set of examples is based on the following ASN.1 module:

Xyz DEFINITIONS IMPLICIT TAGS ::= BEGIN

 X ::= SEQUENCE

 {

 a INTEGER,

 b BOOLEAN OPTIONAL,

118 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

c INTEGER,

 d BIT STRING

 }

 Y ::= SET OF INTEGER

 Z ::= SEQUENCE

 {

 a X,

 b Y

 }

END

The following are all valid strings that the application program can send to CMIP

services.

 Module Type String

Xyz X (a 12, b TRUE, c 56000, d 1101101)

Xyz X (a 12, c 56000, d “1101101”)

Xyz X (12, FALSE, 0, ″″)

Xyz Y (1, 2, 3, 4, 5, 6, 7, 8)

Xyz Y (1,2,3,4,5,6)

Xyz Y ()

Xyz Z (a (a 12, b TRUE, c 56000, d 1101101), b (1,2,3,4))

Xyz Z (a (a 12, c 56000, d 1101101), b ())

Xyz Z ((a 12, c 56000, d 1101101), ())

Chapter 7. Rules for constructing standard CMIP strings 119

120 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 8. Examples of standard CMIP strings

This section contains examples of the CMIP strings that are sent between

application programs and CMIP services.

The requests and responses are sent from the application program to CMIP

services using the MIBSendCmipRequest and MIBSendCmipResponse functions.

For a description of these functions, refer to pages “MIBSendCmipRequest—CMIP

request function” on page 70 and “MIBSendCmipResponse—CMIP response

function” on page 73. The indications and confirmations are received by the

application program using the read queue exit routine or the dataspace dequeue

routine.

The following example shows the call that an application program makes to the

MIBSendCmipRequest to send a CMIP request. The values for the variables

OperationValue and Argument will be determined by the type of request being

sent. Examples on the following pages will show specific examples for the values

of these variables.

 int LinkId;

 int rc;

 void *LocalId;

 unsigned int InvokeId;

 unsigned int OperationValue;

 char Argument[4096];

 rc = MIBSendCmipRequest(LinkId,

 OperationValue, /* 3 for GET, 7 for Action,

 8 for CREATE, etc. */

 Argument,

 LocalId,

 NULL, /* don’t override source object

 specified by LocalId */

 DS_NOT_PROVIDED, /* don’t override dest */

 NULL,

 &InvokeId);

The following example shows the call that an application program makes to the

MIBSendCmipResponse to send a CMIP response. The values for the variables

OperationValue and Argument will be determined by the type of response being

sent. Examples on the following pages will show specific examples for the values

of these variables.

 char *AssocHandleFromRequest;

 int LinkId;

 int rc;

 void *LocalId;

 unsigned int InvokeId, InvokeIdFromRequest;

 unsigned int OperationValue;

 char Argument[4096];

 rc = MIBSendCmipResponse(LinkId,

 InvokeIdFromRequest,

 1, /* last-in-chain indicator */

 1, /* successful */

 OperationValue, /* 3 for GET, 7 for Action,

 8 for CREATE, etc. */

 Argument,

 LocalId,

© Copyright IBM Corp. 1995, 2005 121

NULL, /* don’t override source object

 specified by LocalId */

 AssocHandleFromRequest,

 &InvokeId);

Requests and indications

The following descriptions are for CMIP requests and indications. A request is the

message sent by a manager application program to an agent application program

via the MIBSendCmipRequest function.

An indication is the message received by the agent application program

corresponding to the request.

For each request, the following information is included:

v ASN.1 syntax

v Example request string

v Corresponding indication

GET request—syntax

GetArgument ::= SEQUENCE

 {

 baseManagedObjectClass ObjectClass,

 baseManagedObjectInstance ObjectInstance,

 accessControl [5] AccessControl OPTIONAL,

 synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,

 scope [7] Scope DEFAULT base-and : baseObject,

 filter CMISFilter DEFAULT and : {},

 attributeIdList [12] IMPLICIT SET OF AttributeId OPTIONAL

 }

GET request—example request string

The operation-value for GET is 3, so the value of the OperationValue variable will

be 3 as well.

Here is an example value of the Argument variable:

 (baseManagedObjectClass 2.9.3.2.3.13,baseManagedObjectInstan

 ce (distinguishedName "1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name

 SSCP1A)"))

This will retrieve the values of all attributes of the system object on host

NETA.SSCP1A.

GET request—corresponding indication

Here is an example GET indication corresponding to the previous GET request

example, as received by the application. This shows the APIhdr at the beginning of

the message.

 00000100 0003000A 00000001 00000001 *................*

 2FAA4356 00000000 00000000 01120020 *................*

 A2998360 A3A89785 40F16B40 A2998340 *src-type 1, src *

 81F16B40 94A28740 C3D4C9D7 60F14BD5 *a1, msg CMIP-1.N*

 96A38986 898381A3 89969540 4D8995A5 *otification (inv*

 969285C9 C440F1F9 F6F6F1F8 6B409697 *okeID 196618, op*

 859981A3 89969560 A58193A4 8540F06B *eration-value 0,*

 40819987 A4948595 A3404D94 81958187 * argument (manag*

 8584D682 918583A3 C39381A2 A240F14B *edObjectClass 1.*

 F34BF1F8 4BF04BF0 4BF2F2F6 F76B4094 *3.18.0.0.2267, m*

 81958187 8584D682 918583A3 C995A2A3 *anagedObjectInst*

122 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

81958385 404D8489 A2A38995 87A489A2 *ance (distinguis*

 888584D5 81948540 7DF14BF3 4BF1F84B *hedName ’1.3.18.*

 F04BF24B F44BF67E D5C5E3C1 5EF14BF3 *0.2.4.6=NETA;1.3*

 4BF1F84B F04BF04B F2F0F3F2 7EE2E2C3 *.18.0.0.2032=SSC*

 D7F1C15E F14BF34B F1F84BF0 4BF04BF2 *P1A;1.3.18.0.0.2*

 F2F7F27E E2E6C9E3 C3C8C5C4 4BE2E6D5 *272=SWITCHED.SWN*

 C4F3C1C2 F77D5D6B 4085A585 95A3E3A8 *D3AB7’), eventTy*

 978540F2 4BF94BF3 4BF24BF1 F04BF65D *pe 2.9.3.2.10.6)*

 5D00 *). *

ACTION request—syntax

ActionArgument ::= SEQUENCE {

 baseManagedObjectClass ObjectClass,

 baseManagedObjectInstance ObjectInstance,

 accessControl [5] AccessControl OPTIONAL,

 synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,

 scope [7] Scope OPTIONAL,

 filter CMISFilter DEFAULT and : {},

 actionInfo [12] IMPLICIT ActionInfo

 }

ACTION request—example request string

The operation-value for ACTION is 7, so the value of the OperationValue variable

will be 7 as well.

Here is an example value of the Argument variable:

 (baseManagedObjectClass 1.3.18.0.0.2151,baseManagedObjectIns

 tance (distinguishedName "1.3.18.0.2.4.6=NETA;1.3.18.0.0.203

 2=SSCP1A;1.3.18.0.0.2216=(string SnaNetwork)"),actionInfo (a

 ctionType 1.3.18.0.0.2222, actionInfoArg (start oneTimeOnly)

))

ACTION request—corresponding indication

Here is an example ACTION indication corresponding to the previous ACTION

request example, as received by the application. This shows the APIhdr at the

beginning of the message.

 00000100 00030012 * *

 00000002 00000001 2FAA536E 00000000 *...........>....*

 00000000 0120FA08 A2998360 A3A89785 *........src-type*

 40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *

 C3D4C9D7 60F14BD9 D6C9E581 9784A440 *CMIP-1.ROIVapdu *

 4D8995A5 969285C9 C440F1F9 F6F6F2F6 *(invokeID 196626*

 6B409697 859981A3 89969560 A58193A4 *, operation-valu*

 8540F76B 40819987 A4948595 A3404D82 *e 7, argument (b*

 81A285D4 81958187 8584D682 918583A3 *aseManagedObject*

 C39381A2 A240F14B F34BF1F8 4BF04BF0 *Class 1.3.18.0.0*

 4BF2F1F5 F16B4082 81A285D4 81958187 *.2151, baseManag*

 8584D682 918583A3 C995A2A3 81958385 *edObjectInstance*

 404D8489 A2A38995 87A489A2 888584D5 * (distinguishedN*

 81948540 4DD98593 81A389A5 85C489A2 *ame (RelativeDis*

 A3899587 A489A288 8584D581 9485404D *tinguishedName (*

 C1A3A399 8982A4A3 85E58193 A485C1A2 *AttributeValueAs*

 A28599A3 89969540 4D81A3A3 998982A4 *sertion (attribu*

 A385E3A8 978540F1 4BF34BF1 F84BF04B *teType 1.3.18.0.*

 F24BF44B F66B4081 A3A39989 82A4A385 *2.4.6, attribute*

 E58193A4 85407FD5 C5E3C17F 5D5D6B40 *Value "NETA")), *

 D9859381 A389A585 C489A2A3 899587A4 *RelativeDistingu*

 89A28885 84D58194 85404DC1 A3A39989 *ishedName (Attri*

 82A4A385 E58193A4 85C1A2A2 8599A389 *buteValueAsserti*

 9695404D 81A3A399 8982A4A3 85E3A897 *on (attributeTyp*

 8540F14B F34BF1F8 4BF04BF0 4BF2F0F3 *e 1.3.18.0.0.203*

 F26B4081 A3A39989 82A4A385 E58193A4 *2, attributeValu*

Chapter 8. Examples of standard CMIP strings 123

85407FE2 E2C3D7F1 C17F5D5D 6B40D985 *e "SSCP1A")), Re*

 9381A389 A585C489 A2A38995 87A489A2 *lativeDistinguis*

 888584D5 81948540 4DC1A3A3 998982A4 *hedName (Attribu*

 A385E581 93A485C1 A2A28599 A3899695 *teValueAssertion*

 404D81A3 A3998982 A4A385E3 A8978540 * (attributeType *

 F14BF34B F1F84BF0 4BF04BF2 F2F1F66B *1.3.18.0.0.2216,*

 4081A3A3 998982A4 A385E581 93A48540 * attributeValue *

 4DA2A399 89958740 7FE29581 D585A3A6 *(string "SnaNetw*

 9699927F 5D5D5D5D 5D6B4081 83A38996 *ork"))))), actio*

 95C99586 96404D81 83A38996 95E3A897 *nInfo (actionTyp*

 8540F14B F34BF1F8 4BF04BF0 4BF2F2F2 *e 1.3.18.0.0.222*

 F26B4081 83A38996 95C99586 96C19987 *2, actionInfoArg*

 404DA2A3 8199A340 969585E3 899485D6 * (start oneTimeO*

 9593A85D 5D5D5D00 *nly)))). *

Responses and confirmations

The following descriptions are for CMIP responses and confirmations. A response

is the message sent by an agent application program to a manager application

program via the MIBSendCmipResponse function.

A confirmation is the message received by the manager application program which

corresponds to the response.

For each response or confirmation, the following information is included:

v ASN.1 syntax

v Example response string

v Corresponding confirmation

GET response—syntax

GetResult::=

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL,

 managedObjectInstance ObjectInstance OPTIONAL,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,

 attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

 }

GET response—example response string

The operation-value for GET is 3, so the value of the OperationValue variable will

be 3 as well.

Here is an example value of the Argument variable:

 (managedObjectClass &OC,(distinguishedName &DN),attri

 buteList ((attributeId 2.9.3.2.7.5, (distinguishedNam

 e (((attributeType 1.3.18.0.2.4.6,attributeValue

 NETA), (attributeType 2.9.3.2.7.4,attributeValue

 (name "SSCP1A")))))), (attributeId 2.9.3.2.7.35, enab

 led)))

GET response—corresponding confirmation

Here is an example GET confirmation corresponding to the previous GET response

example, as received by the application. This shows the APIhdr at the beginning of

the message.

 00000000 00030008 * *

 00000003 00000001 2FB39434 00000000 *..........m.....*

 00000000 00000001 A2998360 A3A89785 *........src-type*

 40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *

 C3D4C9D7 60F14BD9 D6D9E281 9784A440 *CMIP-1.RORSapdu *

 4D8995A5 969285C9 C440F1F9 F6F6F1F6 *(invokeID 196616*

124 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

6B409985 A2A493A3 D697A389 9695404D *, resultOption (*

 96978599 81A38996 9560A581 93A48540 *operation-value *

 F36B4099 85A2A493 A3404D94 81958187 *3, result (manag*

 8584D682 918583A3 C39381A2 A240F24B *edObjectClass 2.*

 F94BF34B F24BF34B F1F36B40 94819581 *9.3.2.3.13, mana*

 878584D6 82918583 A3C995A2 A3819583 *gedObjectInstanc*

 85404D84 89A2A389 9587A489 A2888584 *e (distinguished*

 D5819485 404DD985 9381A389 A585C489 *Name (RelativeDi*

 A2A38995 87A489A2 888584D5 81948540 *stinguishedName *

 4DC1A3A3 998982A4 A385E581 93A485C1 *(AttributeValueA*

 A2A28599 A3899695 404D81A3 A3998982 *ssertion (attrib*

 A4A385E3 A8978540 F14BF34B F1F84BF0 *uteType 1.3.18.0*

 4BF24BF4 4BF66B40 81A3A399 8982A4A3 *.2.4.6, attribut*

 85E58193 A485407F D5C5E3C1 7F5D5D6B *eValue "NETA")),*

 40D98593 81A389A5 85C489A2 A3899587 * RelativeDisting*

 A489A288 8584D581 9485404D C1A3A399 *uishedName (Attr*

 8982A4A3 85E58193 A485C1A2 A28599A3 *ibuteValueAssert*

 89969540 4D81A3A3 998982A4 A385E3A8 *ion (attributeTy*

 978540F2 4BF94BF3 4BF24BF7 4BF46B40 *pe 2.9.3.2.7.4, *

 81A3A399 8982A4A3 85E58193 A485404D *attributeValue (*

 95819485 407FE2E2 C3D7F1C1 7F5D5D5D *name "SSCP1A")))*

 5D5D6B40 81A3A399 8982A4A3 85D389A2 *)), attributeLis*

 A3404DC1 A3A39989 82A4A385 404D81A3 *t (Attribute (at*

 A3998982 A4A385C9 8440F24B F94BF34B *tributeId 2.9.3.*

 F24BF74B F56B4081 A3A39989 82A4A385 *2.7.5, attribute*

 E58193A4 85404D84 89A2A389 9587A489 *Value (distingui*

 A2888584 D5819485 404DD985 9381A389 *shedName (Relati*

 A585C489 A2A38995 87A489A2 888584D5 *veDistinguishedN*

 81948540 4DC1A3A3 998982A4 A385E581 *ame (AttributeVa*

 93A485C1 A2A28599 A3899695 404D81A3 *lueAssertion (at*

 A3998982 A4A385E3 A8978540 F14BF34B *tributeType 1.3.*

 F1F84BF0 4BF24BF4 4BF66B40 81A3A399 *18.0.2.4.6, attr*

 8982A4A3 85E58193 A485407F D5C5E3C1 *ibuteValue "NETA*

 7F5D6B40 C1A3A399 8982A4A3 85E58193 *"), AttributeVal*

 A485C1A2 A28599A3 89969540 4D81A3A3 *ueAssertion (att*

 998982A4 A385E3A8 978540F2 4BF94BF3 *ributeType 2.9.3*

 4BF24BF7 4BF46B40 81A3A399 8982A4A3 *.2.7.4, attribut*

 85E58193 A485404D 95819485 407FE2E2 *eValue (name "SS*

 C3D7F1C1 7F5D5D5D 5D5D5D6B 40C1A3A3 *CP1A")))))), Att*

 998982A4 A385404D 81A3A399 8982A4A3 *ribute (attribut*

 85C98440 F24BF94B F34BF24B F74BF3F5 *eId 2.9.3.2.7.35*

 6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*

 40859581 82938584 5D5D5D5D 5D00 * enabled))))). *

CREATE response—syntax

CreateResult::=

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL,

 managedObjectInstance ObjectInstance OPTIONAL,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,

 attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

 }

CREATE response—example response string

The operation-value for CREATE is 8, so the value of the OperationValue variable

will be 8 as well.

Here is an example value of the Argument variable:

 (managedObjectClass 1.3.18.0.0.2054, (distinguis

 hedName ’1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name "

 SSCP1A");2.9.3.2.7.1=(string "EFD00001")’), attr

 ibuteList ((2.9.3.2.7.65, 1.3.18.0.0.2),(2.9.3.2

 .7.1, (string "EFD00001")),(2.9.3.2.7.66, (2.9.3

 .2.4.17,2.9.3.2.4.22,1.3.18.0.0.2063)),(2.9.3.2.

 7.50, (2.9.3.2.3.4)),(2.9.3.2.7.31, unlocked),(2

Chapter 8. Examples of standard CMIP strings 125

.9.3.2.7.35, enabled),(1.3.18.0.0.2775, ()),(2.9

 .3.2.7.33, ()),(2.9.3.2.7.56,(item (equality (at

 tributeId 2.9.3.2.7.14, attributeValue 2.9.3.2.1

 0.7)))),(2.9.3.2.7.55,(single (name (RDNSequence

 (RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.2.4.6, attributeVal

 ue "NETA")), RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 2.9.3.2.7.4, attr

 ibuteValue (name "SSCP1A"))), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType

 1.3.18.0.2.4.12, attributeValue "aplposec"))))))

),(2.9.3.2.7.63,2.9.3.2.6.1)))

CREATE response—corresponding confirmation

Here is an example CREATE confirmation corresponding to the previous CREATE

response example, as received by the application. This shows the APIhdr at the

beginning of the message.

 00000000 0003000A * *

 00000003 00000001 2FB398C6 00000000 *..........qF....*

 00000000 00000004 A2998360 A3A89785 *........src-type*

 40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *

 C3D4C9D7 60F14BD9 D6D9E281 9784A440 *CMIP-1.RORSapdu *

 4D8995A5 969285C9 C440F1F9 F6F6F1F8 *(invokeID 196618*

 6B409985 A2A493A3 D697A389 9695404D *, resultOption (*

 96978599 81A38996 9560A581 93A48540 *operation-value *

 F86B4099 85A2A493 A3404D94 81958187 *8, result (manag*

 8584D682 918583A3 C39381A2 A240F14B *edObjectClass 1.*

 F34BF1F8 4BF04BF0 4BF2F0F5 F46B4094 *3.18.0.0.2054, m*

 81958187 8584D682 918583A3 C995A2A3 *anagedObjectInst*

 81958385 404D8489 A2A38995 87A489A2 *ance (distinguis*

 888584D5 81948540 4DD98593 81A389A5 *hedName (Relativ*

 85C489A2 A3899587 A489A288 8584D581 *eDistinguishedNa*

 9485404D C1A3A399 8982A4A3 85E58193 *me (AttributeVal*

 A485C1A2 A28599A3 89969540 4D81A3A3 *ueAssertion (att*

 998982A4 A385E3A8 978540F1 4BF34BF1 *ributeType 1.3.1*

 F84BF04B F24BF44B F66B4081 A3A39989 *8.0.2.4.6, attri*

 82A4A385 E58193A4 85407FD5 C5E3C17F *buteValue "NETA"*

 5D5D6B40 D9859381 A389A585 C489A2A3 *)), RelativeDist*

 899587A4 89A28885 84D58194 85404DC1 *inguishedName (A*

 A3A39989 82A4A385 E58193A4 85C1A2A2 *ttributeValueAss*

 8599A389 9695404D 81A3A399 8982A4A3 *ertion (attribut*

 85E3A897 8540F24B F94BF34B F24BF74B *eType 2.9.3.2.7.*

 F46B4081 A3A39989 82A4A385 E58193A4 *4, attributeValu*

 85404D95 81948540 7FE2E2C3 D7F1C17F *e (name "SSCP1A"*

 5D5D5D6B 40D98593 81A389A5 85C489A2 *))), RelativeDis*

 A3899587 A489A288 8584D581 9485404D *tinguishedName (*

 C1A3A399 8982A4A3 85E58193 A485C1A2 *AttributeValueAs*

 A28599A3 89969540 4D81A3A3 998982A4 *sertion (attribu*

 A385E3A8 978540F2 4BF94BF3 4BF24BF7 *teType 2.9.3.2.7*

 4BF16B40 81A3A399 8982A4A3 85E58193 *.1, attributeVal*

 A485404D A2A39989 9587407F C5C6C4F0 *ue (string "EFD0*

 F0F0F0F1 7F5D5D5D 5D5D6B40 81A3A399 *0001"))))), attr*

 8982A4A3 85D389A2 A3404DC1 A3A39989 *ibuteList (Attri*

 82A4A385 404D81A3 A3998982 A4A385C9 *bute (attributeI*

 8440F24B F94BF34B F24BF74B F6F56B40 *d 2.9.3.2.7.65, *

 81A3A399 8982A4A3 85E58193 A48540F1 *attributeValue 1*

 4BF34BF1 F84BF04B F04BF25D 6B40C1A3 *.3.18.0.0.2), At*

 A3998982 A4A38540 4D81A3A3 998982A4 *tribute (attribu*

 A385C984 40F24BF9 4BF34BF2 4BF74BF1 *teId 2.9.3.2.7.1*

 6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*

 404DA2A3 99899587 407FC5C6 C4F0F0F0 * (string "EFD000*

 F0F17F5D 5D6B40C1 A3A39989 82A4A385 *01")), Attribute*

 404D81A3 A3998982 A4A385C9 8440F24B * (attributeId 2.*

 F94BF34B F24BF74B F6F66B40 81A3A399 *9.3.2.7.66, attr*

 8982A4A3 85E58193 A485404D D6C2D1C5 *ibuteValue (OBJE*

126 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

C3E360C9 C4C5D5E3 C9C6C9C5 D940F24B *CT-IDENTIFIER 2.*

 F94BF34B F24BF44B F1F76B40 D6C2D1C5 *9.3.2.4.17, OBJE*

 C3E360C9 C4C5D5E3 C9C6C9C5 D940F24B *CT-IDENTIFIER 2.*

 F94BF34B F24BF44B F2F26B40 D6C2D1C5 *9.3.2.4.22, OBJE*

 C3E360C9 C4C5D5E3 C9C6C9C5 D940F14B *CT-IDENTIFIER 1.*

 F34BF1F8 4BF04BF0 4BF2F0F6 F35D5D6B *3.18.0.0.2063)),*

 40C1A3A3 998982A4 A385404D 81A3A399 * Attribute (attr*

 8982A4A3 85C98440 F24BF94B F34BF24B *ibuteId 2.9.3.2.*

 F74BF5F0 6B4081A3 A3998982 A4A385E5 *7.50, attributeV*

 8193A485 404DD682 918583A3 C39381A2 *alue (ObjectClas*

 A240F24B F94BF34B F24BF34B F45D5D6B *s 2.9.3.2.3.4)),*

 40C1A3A3 998982A4 A385404D 81A3A399 * Attribute (attr*

 8982A4A3 85C98440 F24BF94B F34BF24B *ibuteId 2.9.3.2.*

 F74BF3F1 6B4081A3 A3998982 A4A385E5 *7.31, attributeV*

 8193A485 40A49593 96839285 845D6B40 *alue unlocked), *

 C1A3A399 8982A4A3 85404D81 A3A39989 *Attribute (attri*

 82A4A385 C98440F2 4BF94BF3 4BF24BF7 *buteId 2.9.3.2.7*

 4BF3F56B 4081A3A3 998982A4 A385E581 *.35, attributeVa*

 93A48540 85958182 9385845D 6B40C1A3 *lue enabled), At*

 A3998982 A4A38540 4D81A3A3 998982A4 *tribute (attribu*

 A385C984 40F14BF3 4BF1F84B F04BF04B *teId 1.3.18.0.0.*

 F2F7F7F5 6B4081A3 A3998982 A4A385E5 *2775, attributeV*

 8193A485 404D5D5D 6B40C1A3 A3998982 *alue ()), Attrib*

 A4A38540 4D81A3A3 998982A4 A385C984 *ute (attributeId*

 40F24BF9 4BF34BF2 4BF74BF3 F36B4081 * 2.9.3.2.7.33, a*

 A3A39989 82A4A385 E58193A4 85404D5D *ttributeValue ()*

 5D6B40C1 A3A39989 82A4A385 404D81A3 *), Attribute (at*

 A3998982 A4A385C9 8440F24B F94BF34B *tributeId 2.9.3.*

 F24BF74B F5F66B40 81A3A399 8982A4A3 *2.7.56, attribut*

 85E58193 A485404D 89A38594 404D8598 *eValue (item (eq*

 A4819389 A3A8404D 81A3A399 8982A4A3 *uality (attribut*

 85C98440 F24BF94B F34BF24B F74BF1F4 *eId 2.9.3.2.7.14*

 6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*

 40F24BF9 4BF34BF2 4BF1F04B F75D5D5D * 2.9.3.2.10.7)))*

 5D6B40C1 A3A39989 82A4A385 404D81A3 *), Attribute (at*

 A3998982 A4A385C9 8440F24B F94BF34B *tributeId 2.9.3.*

 F24BF74B F5F56B40 81A3A399 8982A4A3 *2.7.55, attribut*

 85E58193 A485404D A2899587 9385404D *eValue (single (*

 95819485 404DD9C4 D5E28598 A4859583 *name (RDNSequenc*

 85404DD9 859381A3 89A585C4 89A2A389 *e (RelativeDisti*

 9587A489 A2888584 D5819485 404DC1A3 *nguishedName (At*

 A3998982 A4A385E5 8193A485 C1A2A285 *tributeValueAsse*

 99A38996 95404D81 A3A39989 82A4A385 *rtion (attribute*

 E3A89785 40F14BF3 4BF1F84B F04BF24B *Type 1.3.18.0.2.*

 F44BF66B 4081A3A3 998982A4 A385E581 *4.6, attributeVa*

 93A48540 7FD5C5E3 C17F5D5D 6B40D985 *lue "NETA")), Re*

 9381A389 A585C489 A2A38995 87A489A2 *lativeDistinguis*

 888584D5 81948540 4DC1A3A3 998982A4 *hedName (Attribu*

 A385E581 93A485C1 A2A28599 A3899695 *teValueAssertion*

 404D81A3 A3998982 A4A385E3 A8978540 * (attributeType *

 F24BF94B F34BF24B F74BF46B 4081A3A3 *2.9.3.2.7.4, att*

 998982A4 A385E581 93A48540 4D958194 *ributeValue (nam*

 85407FE2 E2C3D7F1 C17F5D5D 5D6B40D9 *e "SSCP1A"))), R*

 859381A3 89A585C4 89A2A389 9587A489 *elativeDistingui*

 A2888584 D5819485 404DC1A3 A3998982 *shedName (Attrib*

 A4A385E5 8193A485 C1A2A285 99A38996 *uteValueAssertio*

 95404D81 A3A39989 82A4A385 E3A89785 *n (attributeType*

 40F14BF3 4BF1F84B F04BF24B F44BF1F2 * 1.3.18.0.2.4.12*

 6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*

 407F8197 939796A2 85837F5D 5D5D5D5D * "aplposec")))))*

 5D5D6B40 C1A3A399 8982A4A3 85404D81 *)), Attribute (a*

 A3A39989 82A4A385 C98440F2 4BF94BF3 *ttributeId 2.9.3*

 4BF24BF7 4BF6F36B 4081A3A3 998982A4 *.2.7.63, attribu*

 A385E581 93A48540 F24BF94B F34BF24B *teValue 2.9.3.2.*

 F64BF15D 5D5D5D5D 00 *6.1))))). *

Chapter 8. Examples of standard CMIP strings 127

128 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 9. Create and delete requests

This chapter describes how an application program uses CMIP services to remotely

create and delete objects on agent systems.

Objects are not directly created or deleted by CMIP services in response to CMIP

m-Create and m-Delete requests. When a manager application program sends a

create or delete request to an agent system, these requests are processed by CMIP

agent application programs.

Create requests

CMIP services requires that the create request provide the distinguished name of

the object being created.

For an object to be created by CMIP services, the name binding to be used for the

object must explicitly specify that the create operation is supported. If the name

binding does not explicitly specify that the create operation is supported, the create

request is rejected.

Because objects are not directly created by CMIP services, an application program

must exist that is capable of processing the create request.

CMIP services looks for an application program to handle the create request; this

application program is called a create handler.

v If CMIP services finds a create handler, CMIP services sends the create request to

the create handler.

v If CMIP services cannot find a create handler, CMIP services rejects the create

request with a noSuchObjectClass error.

When the create handler receives the create request, it does one of the following:

v Creates the new object requested on the create request

v Rejects the create request for the new object

v Creates an object different from the object requested on the create request

Creating the new object requested on the create request

To create a new object that is to be registered on the same connection as the create

handler, the create handler registers the new object with the MIBSendRegister

function using the same distinguished name and object class that were specified on

the create request.

After the create handler registers the new object, the create handler acknowledges

the create request. The create handler uses the MIBSendCmipResponse function to

return the response to the sender of the create request.

Rejecting the create request

If the create handler decides to reject the create request, the create handler uses the

MIBSendDeleteRegistration function with no local identifier and the object name

provided with the create request to remove the pending registration for object that

was requested to be created.

© Copyright IBM Corp. 1995, 2005 129

Then the create handler uses the MIBSendCmipResponse function to return an

error response to the sender of of the create request. The error describes to the

manager application program why the create request was rejected.

Creating an object different from object on the create request

If the create handler decides to create an object different from the one that was

requested to be created, the create handler uses the MIBSendDeleteRegistration

function with no local identifier and the object name provided with the create

request to remove the pending registration for object that was requested to be

created. Then the create handler registers the other object with the

MIBSendRegister function.

After the create handler registers the new object, the create handler acknowledges

the create request. The create handler uses the MIBSendCmipResponse function to

return the response to the sender of the create request.

Delete requests

Because objects are not directly deleted by CMIP services, all application programs

must be able to handle delete requests.

For registered objects, the application program sends the delete request to the

application program that registered the object. For objects that are not registered,

the application program sends the delete request to the subtree manager of the

object. The create handler is not involved in the processing of the delete request.

When an application program receives the delete request, it either deletes the

object or rejects the delete request. These two situations are described here for

non-scoped delete requests.

Deleting the object requested on the delete request

In this situation, a manager application program requests that an object be deleted

and the agent application program that owns the object allows it to be deleted. In

general, these are the steps that are followed:

1. The manager application program issues the CMIP delete request for an object.

2. CMIP services sends an ROIV message to the agent application program that

owns the object.

3. The agent application program sends the MIB.DeleteResponse with a result

code of 0 to CMIP services.

4. CMIP services sends MIB.Delete with an action code of 0 to the agent

application program.

5. The agent application program uses the MIBSendCmipResponse to return the

CMIP delete response to CMIP services.

6. CMIP services sends an RORS to the manager application program containing

the application program’s delete response.

7. CMIP services sends the API_TERMINATE_INSTANCE to the deleted object.

Rejecting the delete request

In this situation, a manager application program requests that an object be deleted

and the agent application program that owns the object rejects the delete request.

In general, these are the steps that are followed:

1. The manager application program issues the CMIP delete request for an object.

130 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

2. CMIP services sends an ROIV message to the agent application program that

owns the object.

3. The agent application program sends the MIB.DeleteResponse with a result

code of 1 to CMIP services.

4. CMIP services sends an ROER to the manager application program.

Subtree managers might receive deletes that were not scoped specifically to the

subtree manager object but that might apply to an object under the subtree

manager. The subtree manager must perform delete processing with its objects.

Chapter 9. Create and delete requests 131

132 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 10. VTAM-specific requests and responses

The following VTAM-specific requests and responses are accepted and processed

by VTAM CMIP services. The requests are sent by the MIBSendRequest function.

The responses are sent from CMIP Services to the application program. These

requests and responses allow the application program to perform certain actions

that are specific to VTAM CMIP services, such as:

v Subscribing to association information

v Registering an application entity title

v Starting associations

v Ending associations

v Getting association information

v Creating a dedicated association

Here are the requests and responses:

v ACF.Subscribe

v ACF.UnSubscribe

v ACF.RegisterAE

v ACF.Associate

v ACF.Release

v ACF.Abort

v ACF.GetAssociationInfo

v ACF.AssociateRsp

v ACF.SubscribeRsp

v ACF.SubscribeMess

v MIB.GeneralRequest

v MIB.GeneralResponse

v MIB.GeneralError

v MIB.ServiceError

v MIB.ServiceAccept

v MIB.RegisterAccept

In the following sections, please note that the example strings are divided across

multiple lines for legibility only. The actual strings being sent must be continuous.

Subscribing to association information

The ACF.Subscribe and ACF.UnSubscribe strings cause CMIP services to notify an

application program when the state of an association changes. These strings are

used only when an application program depends on maintaining a connection with

another application program. Because associations are automatically started when

they are needed, these strings are used infrequently.

Syntax for the subscription strings

The following strings relate to subscribing to associations:

v ACF.Subscribe

v ACF.UnSubscribe

v ACF.SubscribeRsp

v ACF.SubscribeMess

The syntax for each string is shown here. Notice that the same response string,

ACF.SubscribeRsp, is used for both the ACF.Subscribe and the ACF.UnSubscribe

© Copyright IBM Corp. 1995, 2005 133

strings. Zero on the ACF.SubscribeRsp string indicates success; nonzero response

values are in Appendix A, “C language header file (ACYAPHDH),” on page 229.

For a distinguished name, either the full name or an abbreviated version can be

used. The error code 803 indicates that the association does not exist.

Subscribe ::= CHOICE {

 ae-title TitleType,

 association [2] IMPLICIT HandleType

 }

UnSubscribe ::= CHOICE {

 ae-title TitleType,

 association [2] IMPLICIT HandleType

 }

TitleType ::= CHOICE {

 oi [0] IMPLICIT OBJECT IDENTIFIER

 dn [1] IMPLICIT DistinguishedName

 }

HandleType ::= PrintableString (SIZE(1..36))

When the state of an association changes and an application program has

registered to receive notification of changes through the ACF.Subscribe string, an

ACF.SubscribeMess string is sent to that application program:

SubscribeMess ::= SubscribeState

The ACF.SubscribeMess syntax does not include the handle of the association

whose state has changed. That can be found in the src field of the string header.

In the list of ACF.SubscribeState values, the following values have meaning:

v associated (means the association is established and running)

v terminated (means the association is ended).

The idle state is a temporary initial state. The wait-a-.... states are transitional

states. The wait-a-assoc-... states indicate that a new association is in the process

of being established. The wait-a-rel-... states show that an existing association is

in the process of being terminated.

SubscribeState ::= INTEGER {

 idle (0),

 wait-a-assoc-rsp (1),

 wait-a-assoc-ind (2),

 wait-a-assoc-cnf (3),

 wait-a-rel-rsp (4),

 wait-a-rel-cnf (5),

 associated (8),

 wait-a-rel-cnf-indicator (9),

 wait-a-rel-rsp-responder (10),

 terminated (11)

 }

Examples of subscription strings

ACF.Subscribe (association ’a2’)

ACF.SubscribeRsp 803

ACF.Subscribe (ae-title (dn

 (RelativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.2.4.6, attributeValue NETA)),

 RelativeDistinguishedName (AttributeValueAssertion

 (attributeType 2.9.3.2.7.4, attributeValue (name SSCP1A))),

 RelativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.2.4.12, attributeValue MYAENAME))))

134 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

ACF.SubscribeRsp 0

ACF.UnSubscribe (association s7B1920)

ACF.SubscribeRsp 0

ACF.UnSubscribe (ae-title (dn "1.3.18.0.2.4.6=NETA;2.9.3.2

 .7.4=(name SSCP1A);1.3.18.0.2.4.12=OSISMASE"))

ACF.SubscribeRsp 0

ACF.SubscribeMess 8

How the subscription strings are used

To establish a subscription:

1. An application program builds an ACF.Subscribe string and sends it to CMIP

services.

2. CMIP services registers the subscription and returns an ACF.SubscribeRsp

string to indicate the success or failure of the subscription.

3. When the state of the association changes, CMIP services sends an

ACF.SubscribeMess string to the application program containing the new state

of the association.

To terminate a subscription:

1. An application program builds an ACF.UnSubscribe string and sends it to

CMIP services.

2. CMIP services deletes the subscription and returns an ACF.SubscribeRsp string

to indicate the success or failure of the deletion. An ACF.SubscribeRsp string

that indicates success does not mean that a subscription did exist.

Registering an application entity

The ACF.RegisterAE request is used to register an explicit application entity with

CMIP services. This function can be used if an application program needs to be its

own application entity. In general, application programs do not need to use this

function. The default local application entity handles all of the application program

strings for an association.

An application program must register as its own application entity, if:

v The application program is going to create EFDs.

v The application program needs to request a dedicated association. For a

description of how to create a dedicated association, refer to “Creating a

dedicated association” on page 140.

Any application program can register an application entity, but only one

application program can register any particular application entity. For example,

application programs A and B can each register application entities A’ and B’, but

application program B cannot register A’ once it has already been registered by

application program A.

Any application program can register multiple application entities, but multiple

application programs cannot register the same application entity.

Once an application entity has been registered, any associations that are remotely

initiated specifying the application entity as the destination of the association are

associated directly with the application program that registered the application

entity. Any strings that do not include targeting information, such as events, are

sent to the application entity directly.

Chapter 10. VTAM-specific requests and responses 135

The ACF.RegisterAE request can be used to create an application entity that

represents a single application program on CMIP services. This string can be useful

if the application program needs to receive event reports directly from other

systems.

Syntax of the registration strings

The ACF.RegisterAE request is used to register an application entity.

The syntax for each string is shown here.

RegisterAE ::= TitleType

TitleType ::= CHOICE {

 oi [0] IMPLICIT OBJECT IDENTIFIER

 dn [1] IMPLICIT DistinguishedName

 }

RegisterRsp ::= INTEGER {

 success (0),

 not-accomplished (1)

 }

Examples of RegisterAE strings

The second example, identical to the first, fails because an application entity name

can be registered only once by each instance of CMIP services.

ACF.RegisterAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.7.

 4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME")

MIB.ServiceAccept()

ACF.RegisterAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.7.

 4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME")

MIB.ServiceError(resultCode 827)

How the registration strings are used

To register an application entity title:

1. An application program builds an ACF.RegisterAE request and sends it to

CMIP services. CMIP services adds the identification of the source of the string,

as with any other string.

2. CMIP services adds the application entity title to the list of supported local

application entity titles and sets up communication so that local strings

destined for this application entity take the same short path (with no encoding

or decoding performed) as the local strings that are sent to the default local

application entity.

3. CMIP services associates the name of the instance with the application entity

being registered. This information is added to strings that arrive on associations

with the application entity by CMIP services.

4. CMIP services responds to the instance indicating that the application entity

has been registered.

Starting associations

The ACF.Associate string causes CMIP services to start an association explicitly on

behalf of an application program. In general, this string is not needed.

The ACF.Associate string can be used to establish a dedicated association for

application programs that require them. For a description of how to create a

dedicated association, refer to “Creating a dedicated association” on page 140.

136 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Syntax of the associate strings

The following strings relate to starting an associations:

v ACF.Associate

v ACF.AssociateRsp

The syntax for each string is shown here.

Associate ::= SEQUENCE {

 targetAE TitleType,

 securityInfo OCTET STRING OPTIONAL

 }

TitleType ::= CHOICE {

 oi [0] IMPLICIT OBJECT IDENTIFIER

 dn [1] IMPLICIT DistinguishedName

 }

Examples of the associate strings

The example that includes the MIB.ServiceError string shows what happens when

the target system is not connected: no association can be established.

ACF.Associate(targetAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.

 7.4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME"))

ACF.AssociateRsp (handle aF)

ACF.Associate(targetAE (dn "1.3.18.0.2.4.6=NETB;2.9.3.2.

 7.4=(name SSCP1A);1.3.18.0.2.4.12=OSISMASE"))

MIB.ServiceError(resultCode 817)

How the associate strings are used

When an application program sends an ACF.Associate string to CMIP services and

the application program has already issued the ACF.RegisterAE request, a

dedicated association is created. For information about a dedicated association,

refer to “Creating a dedicated association” on page 140.

When an application program sends an ACF.Associate string to CMIP services and

it has not issued registerAE, a default association is created.

A default association and an association created automatically by CMIP services

share the following characteristics:

v Both types of associations can be automatically selected by CMIP services.

v Any application program can destroy the association.

v The association is automatically destroyed by timing out if it is not used.

To establish an association:

1. An application program builds an ACF.Associate string and sends it to CMIP

services.

2. CMIP services initiates an association with the desired application entity and

returns the newly assigned association handle for the association.

Ending associations

In some cases, an application program knows that an association should be ended.

The ACF.Release and ACF.Abort strings indicate that an association should be

ended gracefully (ACF.Release) or abruptly (ACF.Abort). The ACF.Release string

ensures that all pending messages have cleared before the association is ended.

Chapter 10. VTAM-specific requests and responses 137

If the association is ended successfully, the MIB.ServiceAccept string is sent. If the

association is not ended successfully, the MIB.ServiceError string is sent. For

description of these strings, refer to “Requests and responses with the MIB prefix”

on page 141.

Syntax of the ACF.Release and ACF.Abort strings

The following strings relate to ending associations:

v ACF.Release

v ACF.Abort

The syntax for each string is shown here.

Release ::= SEQUENCE {HandleType}

HandleType ::= PrintableString (SIZE(1..36))

Abort ::= SEQUENCE {HandleType}

Examples of the ACF.Release and ACF.Abort strings

Note that the example that includes the MIB.ServiceError string has an extra right

parenthesis.

ACF.Release (a4))

MIB.ServiceError(resultCode 345,resultMessage "msg ACF.Release (a4))"

ACF.Abort (a8)

MIB.ServiceAccept()

ACF.Release (s17B1440)

MIB.ServiceAccept()

How the ACF.Release and ACF.Abort strings are used

An application program sends either an ACF.Release or ACF.Abort string

containing the identification of the association to be ended. If the association exists,

it is ended. CMIP services sends the ACF.AssociateRsp string to the application

program.

Getting association information

In some cases an application program needs to learn about an active association.

An application program can request a number of items corresponding to a specific

association. CMIP services returns values for the following attributes:

v state

v partner-AE-title

v securityInfo

v peerAuthenticationPerformed

Syntax of the GetAssociationInfo string

The ACF.GetAssociationInfo string gathers information about an active association.

This syntax for each string is shown here.

GetAssociationInfo ::= SEQUENCE {

 handle GraphicString,

 info BIT STRING {

 state (0),

 assoc-handle (1),

 sess-handle (2),

 partner-AE-Title (3),

138 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

application-context (4),

 presentation-context-def-list (5),

 securityInfo (6),

 peerAuthenticationPerformed (7),

 }

 }

AssociationInfo ::= SET OF InformationPair

InformationPair ::= SEQUENCE {

 label GraphicString,

 value GraphicString

 }

Examples of the GetAssociationInfo string

The first example includes the MIB.ServiceError string because the message did not

specify as many zeros or ones as there are bits in the bit string.

The remaining examples show successful use of ACF.GetAssociationInfo.

ACF.GetAssociationInfo(handle ’a1’, info 00010)

MIB.ServiceError(resultCode 804)

ACF.GetAssociationInfo(handle a1, info 00000000)

ACF.AssociationInfo ()

ACF.GetAssociationInfo(handle ’a2’, info 00010000)

ACF.AssociationInfo ((partner-AE-Title ’1.3.18.0.2.4.6=N

 ETA;2.9.3.2.7.4=(name "SSCP1A");1.3.18.0.2.4.12=OSISMASE’))

ACF.GetAssociationInfo(handle ’a3’, info 10010000)

ACF.AssociationInfo ((state 8),(partner-AE-Title ’1.3.18

 .0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP1A");1.3.18.0.2.4.12=OSISMASE’))

ACF.GetAssociationInfo(handle ’s147B290’, info 10010011)

ACF.AssociationInfo ((state 8),(partner-AE-Title ’1.3.18

 .0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP2A");1.3.18.0.2.4.12=OS

 ISMASE’),(securityInfo ""),(peerAuthenticationPerformed TRUE))

ACF.GetAssociationInfo(handle ’aA’, info 11111111)

ACF.AssociationInfo ((state 8),(partner-AE-Title ’1.3.18

 .0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP2A");1.3.18.0.2.4.12=OS

 ISMASE’),(securityInfo A1B2C3D4),(peerAuthenticationPerformed FALSE))

How the GetAssociationInfo string is used

An application program sends a GetAssociationInfo string to CMIP services, filling

in the types of information it requires. CMIP services returns an AssociationInfo

string containing the desired information.

The labels used to identify the information on the response are identical to the

named bits on the request.

The value is the value corresponding to the label. For securityInfo, the value is

the information passed (if any) from the association partner when the association

was requested. For securityInfo, the value is saved only on the target CMIP

services.

For peerAuthenticationPerformed, the value (on both initiating and target systems)

is 0 if no authentication is performed by CMIP services and 1 if DES-based security

is performed for this association by CMIP services.

Chapter 10. VTAM-specific requests and responses 139

Creating a dedicated association

A dedicated association is restricted as to who can use it on the CMIP services that

created the association. A dedicated association has the following characteristics:

v It is only used if specifically requested by the application program that sends the

ACF.Associate string to CMIP services.

v It can only be destroyed by an ACF.Release or ACF.Abort string from the

application program that sent the ACF.Associate string.

Note: On the other CMIP services, the association is not flagged as dedicated.

Therefore, it can time out or be used by any application program.

In some cases, application programs need to monitor the existence of remote

systems. For example, an application program might need to be aware when a

remote system fails. Having EFDs on that remote system helps only in cases when

actual communication remains intact. If connectivity to the remote system is lost,

the application program might not be notified of the event. If the application

program needs to know that connectivity is lost, the application program can start

a dedicated association to the remote system and monitor it for failures.

Idle CMIP associations are terminated by CMIP services on a regular basis,

according to a timer:

v If limited resources is enabled, the limited resources timer is used.

v If limited resources is not enabled, the CMIP services timer is used. The CMIP

services timer terminates idle associations every 2 hours.

Shared associations, which are those started automatically by CMIP services on an

as-needed basis, are terminated when the timer expires, unless the association is

being used for an outstanding CMIP operation.

Dedicated associations are not terminated on the originating system even if there is

no outstanding work. Note that remote systems, which are those that did not

initiate the dedicated association, are not aware that the association is dedicated.

The remote systems treat the association as shared. The remote systems terminate

the idle association when the timer on the remote system expires.

To prevent associations from being automatically terminated, you can maintain a

never-ending operation on the association. For example, one application program

can be designed to have a special object that never responds to a particular

operation. Another application program can then issue this special operation to

that object, solely for the purpose of maintaining a never-ending operation on the

association.

The application programs can continue to send or receive other operations on that

same association.

In addition to ensuring that the association remains active, an application program

can monitor an association by subscribing to it. When an application program

subscribes to an association, the application program is notified if the association is

terminated. For a description of how to subscribe to an association, refer to

“Subscribing to association information” on page 133.

To create a dedicated association, an application program must do the following:

v Register an application entity (AE) title. Refer to “Registering an application

entity” on page 135 for more information.

140 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

v Establish an association with the remote system as the target application entity.

Refer to “Starting associations” on page 136 for more information.

v Subscribe to the association. Refer to “Subscribing to association information” on

page 133 for more information.

Requests and responses with the MIB prefix

The following requests and responses are described in this section:

v MIB.GeneralRequest

v MIB.GeneralResponse

v MIB.GeneralError

v MIB.ServiceError

v MIB.ServiceAccept

v MIB.RegisterAccept

MIB.GeneralRequest, MIB.GeneralResponse, and

MIB.GeneralError

These messages are built on behalf of the application program by the

MIBSendCmipRequest and MIBSendCmipResponse functions. An application

program does not build them and an application program will not receive them.

They appear in buffer traces of application programs that call the

MIBSendCmipRequest or MIBSendCmipResponse functions.

MIB.ServiceError

The MIB.ServiceError message is sent to an application program from CMIP

services when a request or response from the application program cannot be

processed for some reason. Some example reasons are parsing errors in the request,

network errors trying to reach the destination object, or memory allocation errors.

For some types of errors, additional information will be provided in the optional

resultMessage section of the ServiceError SEQUENCE.

Here is a sample ServiceError as received by an application, including the APIhdr:

 03000000 00030017 00000003 00000001 *................*

 2FAA7B32 013D0000 00000000 00000001 *..#.............*

 94A28740 D4C9C24B E28599A5 898385C5 *msg MIB.ServiceE*

 99999699 4D9985A2 A493A3C3 96848540 *rror(resultCode *

 F3F1F76B 9985A2A4 93A3D485 A2A28187 *317,resultMessag*

 85407FA4 948595A3 404DF24B F94BF34B *e "ument (2.9.3.*

 F24BF34B F1F36BC0 91D08586 86D48195 *2.3.13,.j.effMan*

 81878584 D6829185 83A3C995 A27F5D00 *agedObjectIns").*

The position of the string where parsing stopped is delimited in the portion of the

original message byX'C0' and X'D0'. In this case, the character pointed out is j of

jeffManagedObjectInstance. This label should instead be

baseManagedObjectInstance.

MIB.ServiceAccept

The MIB.ServiceAccept message is sent to an application program from CMIP

services when the application program sends an unconfirmed CMIP request or a

CMIP response. Its purpose is to notify the application program that the request or

response was processed correctly.

Here is a sample MIB.ServiceAccept as received by an application program

including the APIhdr:

Chapter 10. VTAM-specific requests and responses 141

02000100 00030011 00000001 00000001 *................*

 2FAA54E5 00000000 00000000 00000001 *...V............*

 A2998360 A3A89785 40F16B40 A2998340 *src-type 1, src *

 81F16B40 94A28740 D4C9C24B E28599A5 *a1, msg MIB.Serv*

 898385C1 83838597 A34D5D00 *iceAccept(). *

MIB.RegisterAccept

The MIB.RegisterAccept message is sent to an application program from CMIP

services when an object is successfully registered by that application program.

An object can be successfully registered even if one or more items in the

allomorphs list or create handler list cannot be processed. In this case, information

about allomorphs or create handler failures will be in the MIB.RegisterAccept

message.

Here is an example MIB.RegisterAccept as received by an application program

including the APIhdr:

 01000000 00030018 * *

 00000003 00000001 2FAA7CF4 00000000 *..........@4....*

 00000000 00010000 A2998360 A3A89785 *........src-type*

 40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *

 D4C9C24B D9858789 A2A38599 C1838385 *MIB.RegisterAcce*

 97A34D95 819485C2 89958489 958740F1 *pt(nameBinding 1*

 4BF34BF1 F84BF04B F04BF2F1 F7F26B40 *.3.18.0.0.2172, *

 81939396 94969997 88A2C599 999699D3 *allomorphsErrorL*

 89A2A340 4D5D6B40 83998581 A385C881 *ist (), createHa*

 95849385 99C59999 9699D389 A2A34D5D *ndlerErrorList()*

 5D00 *). *

142 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 11. Application-program-to-application-program

security

In VTAM CMIP services, there are two kinds of security:

v System-to-system security

v Application-program-to-application-program security.

System-to-system security is between two instances of CMIP services or between

CMIP services and itself. See z/OS Communications Server: SNA Network

Implementation Guide and z/OS Communications Server: SNA Resource Definition

Reference for more information about this type of security.

This chapter describes how to define application-program-to-application-program

security.

For any particular association, application-program-to-application-program security

and DES-based system-to-system security are mutually exclusive. If two

application programs decide to implement application-program-to-application-
program security and the CMIP Services for each application program has defined

DES-based security to be used between the two CMIP services, the association

between the two application programs fails. To establish a secure association

between two application programs on two instances of CMIP services, choose one

of the following methods:

v Use DES-based security for all associations between the two instances

v Use application-program-to-application-program security for all associations

between the two instances

v Register an application entity title for one or both application programs. Use

application-program-to-application-program security between the two

application entities. For a description of how to register an application entity

title, refer to “Registering an application entity” on page 135.

To use application-program-to-application-program security, you need to

understand the sequence of strings sent between each instance of CMIP services

and the application programs attempting to set up an association.

For syntax and details about the particular strings, refer to Chapter 10,

“VTAM-specific requests and responses,” on page 133.

If the two instances of CMIP services for the application programs have defined

the associationKey attribute associationKey ’.’ in the directory definition files,

follow the steps here to specify application-program-to-application-program

security.

As you read the steps, refer to Figure 5 on page 144 for an illustration. The

numbers in the figure correspond to the steps.

The steps refer to an origin application program and a target application program. The

origin application program requests that the association be established with the

target application program. For example, the origin application program might be

a manager application program, and the target application program might be an

agent application program.

© Copyright IBM Corp. 1995, 2005 143

1. The origin application program decides to communicate with a target

application program. The origin application program issues an ACF.Associate

string to its CMIP services. The ACF.Associate string includes the securityInfo

attribute.

 2. The origin application program checks the directory definition file. The

directory definition file indicates that the association is allowed to be

established between the two application programs. The file also indicates that

the securityInfo attribute must be passed to the target application program.

 3. CMIP services sends the securityInfo value on the associate request to the

other CMIP services.

 4. If the receiving CMIP services is not using DES-based security, that CMIP

services discovers the securityInfo value. CMIP services assumes that the

securityInfo information is tied to that particular association.

 5. The CMIP services for the target application program sends a positive

response to the associate request.

 6. The CMIP services for the origin application program checks the directory

definition file again, in case it has changed.

 7. When the association between the two CMIP services has been established

successfully, CMIP services returns an association handle, which identifies to

the application program this particular association.

 8. The origin application program subscribes to that association so that the origin

application program can be informed when the association ends.

So long as the CMIP services association stays intact, the partner at the other

end is the same on subsequent requests as it was on the initial request.

11

14

2 4

5

3

6

7

1 13

9

12

108

Figure 5. Application-program-to-application-program security

144 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

However, associations can be terminated independently of either the origin

application program or the target application program. For example, either of

the following could end an association:

v The limited resources function in VTAM that allows the selective

termination of idle LU 6.2 (APPC) sessions can end an association by

terminating a session that the association is using.

v CMIP services can end an association that has not been used.

For more information about the effects of the VTAM limited resources

function and the CMIP services automatic termination of associations, refer to

“Starting associations” on page 136.

Because associations can be reused for associations between different partners

at a later time, the application programs on both ends of an association need

to be aware of the association status.

In this example, the origin application program initiates the association. If the

association goes down, the origin application program needs to initiate

another association and possibly reissue requests that are outstanding at the

time the prior association ended. (CMIP services for the origin application

program returns an error when requests are sent over an association that has

ended.)

To be aware of association termination, the origin application program can

either issue an ACF.Subscribe string for that association or wait until an error

code is returned from the MIBSendCmipRequest or MIBSendRequest function.

 9. The origin application program sends to the target application program a

CMIP request. The origin application program identifies the appropriate

association by using the association handle that was returned in step 7 on

page 144.

CMIP services routes the request over only the designated association. This is

the first time that the target application program is aware of the existence of

the origin application program.

If CMIP services cannot route the request over that association, CMIP services

returns the string MIB.ServiceError (resultCode nnn) to the application

program, where nnn is the number of the error code.

For the names of each error code number, refer to the language header file,

ACYAPHDH, or Appendix A, “C language header file (ACYAPHDH),” on

page 229. For the names with descriptions of each error code number, refer to

Appendix C, “Error codes sent by CMIP services,” on page 263.

10. If this is the first CMIP request issued by the origin application program after

requesting the association, the target application program has no prior

knowledge of the particular association. The target application program

therefore issues the GetAssociationInfo string to CMIP services, specifying the

particular association handle.

11. CMIP services returns the requested information on the ACF.AssociationInfo

string and includes the securityInfo value that was obtained by the origin

CMIP services.

12. On every CMIP request, the target application program is required to verify

whether the requesting application program has authority to issue such a

request and to receive a valid response. In this example, the target application

program accesses a security function, such as Resource Access Control Facility

(RACF®).

13. As mentioned in step 8 on page 144, the application programs on both ends of

the association need to be aware of the association status. Therefore, the target

application program should also issue the ACF.Subscribe string to its CMIP

Chapter 11. Application-program-to-application-program security 145

services. If the target application program ever receives an ACF.SubscribeMess

string indicating that the association is no longer active, the target application

program should discard its knowledge of this association, since this

information is no longer valid.

14. The target application program responds to the CMIP request.

Note that most of these steps occur only when the association is being established.

Once the association is established, only steps 9, 12, and 14 are performed.

146 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Part 2. VTAM topology agent

© Copyright IBM Corp. 1995, 2005 147

148 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 12. Introduction to VTAM topology agent

In VTAM, CMIP services is made available by specifying the OSIMGMT=YES start

option. This start option gives you access to the following:

v VTAM topology agent

v CMIP services

The VTAM topology agent is a part of VTAM that functions as a CMIP application

program. It is designed to communicate through the application program interface

that is part of VTAM CMIP services with a network manager application program,

such as the NetView program. For information on the manager function, refer to

TME 10™ NetView for OS/390 SNA Topology Manager and APPN Accounting Manager

Implementation Guide.

The information provided by the VTAM topology agent and CMIP services allows

users at a topology manager application program to monitor resource status and to

manage the network. The manager application program is installed, started, and

maintained separately from VTAM.

The basic function of the VTAM topology agent is to provide the capability for

monitoring the topology of a VTAM network. The VTAM topology agent provides

this capability by supplying the following topology information:

v Local topology

v Network topology

v LUs that VTAM owns

v LUs that are owned by another node but are known to this VTAM

The VTAM topology agent supplies the topology information by:

v Responding to requests for data

v Providing unsolicited data

The following sections give the details of the CMIP operations that the VTAM

topology agent supports and describe the data supplied by the topology agent for

those CMIP operations. Chapter 13, “OSI object classes and VTAM resources,” on

page 151 describes how the VTAM topology agent maps VTAM resources to OSI

objects.

Chapter 14, “OSI operations,” on page 159 discusses the OSI operations that are

performed on the objects, the CMIP responses and errors that the topology agent

provides, and the general resource monitoring process.

Chapter 15, “VTAM topology monitoring,” on page 171 describes the specific

resource-monitoring operations. This chapter describes how to request the

monitoring and explains the data VTAM provides.

Chapter 16, “Requesting specific resource data,” on page 219 describes how the

VTAM topology agent gathers information about specific resources.

For reference, the following lists are included in the appendixes:

v Appendix E, “VTAM topology agent object and attribute tables,” on page 301

contains a list of all object classes supported by the VTAM topology agent, the

operations that are supported for each class, and a list of the supported

attributes for each object class.

© Copyright IBM Corp. 1995, 2005 149

v Appendix F, “VTAM topology agent attributes definition,” on page 313 contains

a comprehensive list of all supported attributes, including a description of the

semantics of the attribute, the syntax of the attribute, and the uses of the

attribute.

150 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 13. OSI object classes and VTAM resources

This chapter describes of the OSI object definitions supported by the VTAM

topology agent.

OSI object classes

The VTAM topology agent provides topology data for the network resources that

VTAM manages. To do this the VTAM resources must first be viewed in the

object-oriented context of the OSI object definitions. The following list shows the

OSI object classes supported by the VTAM topology agent:

v crossDomainResource

v crossDomainResourceManager (valid only in replies, not requests)

v definitionGroup

v appnEN

v interchangeNode

v lenNode

v logicalLink

v logicalUnit

v luCollection

v luGroup

v logicalUnitIndex

v migrationDataHost

v appnNN

v port

v appnRegisteredLu

v snaLocalTopo

v snaNetwork

v appnTransmissionGroup (valid only in replies, not requests)

v subareaTransmissionGroup (valid only in replies, not requests)

v t2-1Node

v t4Node

v t5Node

v virtualRoute (valid only in replies, not requests)

v virtualRoutingNode (valid only in replies, not requests)

Each object class definition contains a list of attributes for that class. The attributes

supported by VTAM are listed by object class in Appendix E, “VTAM topology

agent object and attribute tables,” on page 301. Only the object classes that are

valid in requests are listed.

Although some of the object classes have obvious meanings, some represent

resources in VTAM that are known by different names. The next sections address

the mapping of VTAM resources back to these OSI object classes. Note that some

of the OSI classes do not represent existing VTAM objects; these OSI objects

generally represent a group of VTAM resources. These object types are described

more fully in Chapter 15, “VTAM topology monitoring,” on page 171.

© Copyright IBM Corp. 1995, 2005 151

Mapping VTAM resources to OSI object classes

The resources that VTAM manages are known traditionally by a somewhat

different set of names than the OSI object classes. For the VTAM resources with

different names, the following table shows the mapping to the OSI classes:

 Table 8. VTAM resources mapped to OSI classes

VTAM resource OSI class

physical unit logicalLink

linkstation logicalLink

application logicalUnit

dependent LU logicalUnit

independent LU crossDomainResource

CDRSC crossDomainResource

CDRM crossDomainResourceManager

type 5 node t5Node

type 4 node (NCP) t4Node

type 2.1 node t2-1Node

APPN end node appnEN

APPN network node appnNN

interchange node interchangeNode

migration data host migrationDataHost

line port

channel port

appnRegisteredLu appnRegisteredLu

subarea TG subareaTransmissionGroup

APPN TG appnTransmissionGroup

major node definitionGroup

USERVAR luGroup

generic resource luGroup

Naming the objects

Each instance of an object class is called an object instance. Because an object

instance consists only of attributes and behavior, there is not an object instance

name assigned to the instance. As in many object-oriented systems, one attribute is

assigned to contain a value that is used to name the object instance. This attribute

is called the naming attribute. Unlike some other systems, instance names in the

VTAM topology agent do not consist solely of the value of the naming attribute.

Instead, instances are identified by their distinguished names (DNs). The

distinguished name consists of a sequence of relative distinguished names (RDNs),

each of which contains an attribute value assertion (AVA).

Consider this example: we have a network, NETA, and a VTAM type 5 node,

SSCP1A, and a channel attached to SSCP1A called 0321-L. The channel is

considered a port object. It has a distinguished name that is composed of three

relative distinguished names. In Figure 6 on page 153, the leftmost name is the first

152 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

relative distinguished name, the next name is the second, and the rightmost name

is the third.

 The name of the port object in this example suggests a hierarchy. The leftmost

relative distinguished name is the highest level in the hierarchy, the network

identifier. The next name is lower in the hierarchy, the node name. And the

rightmost name is the lowest in the hierarchy, the resource name. This naming

convention is called name-containment.

The port object name must be unique within the domain of the SSCP. The name is

made unique among all SSCPs in the network by qualifying it with the SSCP

name. The name is made universally unique by qualifying it with the network ID

as well, assuming the network ID is unique.

VTAM-managed objects are named under VTAM, which is a snaNode object with

the naming attribute snaNodeName. VTAM is named under a netIDsubnetwork

object, with the naming attribute snaNetId. The distinguished names are actually a

sequence of naming attributes and their values, starting at the highest level object

and moving toward the lowest level object.

A summary of the distinguished names for the VTAM-managed objects is given in

Table 9.

 Table 9. Object names and shorthand distinguished names

Object name Shorthand distinguished names

t2-1Node snaNetID=netid; snaNodeName=CPname

lenNode snaNetID=netid; snaNodeName=CPname

appnNN snaNetID=netid; snaNodeName=CPname

appnEN snaNetID=netid; snaNodeName=CPname

virtualRoutingNode (See note 1.) snaNetID=netid; virtualRoutingNodeName=CPname (of the virtual routing node)

interchangeNode snaNetID=netid; snaNodeName=CPname

migrationDataHost snaNetID=netid; snaNodeName=CPname

t5Node snaNetID=netid; snaNodeName=SSCPname

t4Node snaNetID=netid; snaNodeName=SSCPname; snaNodeName=NCPname

logicalUnit One of the following:

v snaNetID=netid; snaNodeName=CPname; luName=netid.LUname

v snaNetID=netid; snaNodeName=CPname; luName=LUname

crossDomainResourceManager (See note 2.) One of the following:

v snaNetID=netid; snaNodeName=CPname; snaNodeName=netid.CDRMname

v snaNetID=netid; snaNodeName=CPname; snaNodeName=CDRMname

crossDomainResource (See note 3.) One of the following:

v snaNetID=netid; snaNodeName=CPname; nonLocalResourceName=netid.CDRSCname

v snaNetID=netid; snaNodeName=CPname; nonLocalResourceName=CDRSCname

snaNetId=NETA ; snaNodeName=SSCP1A ; portId=0321-L

Where:

 - snaNetId=NETA is the first relative distinguished name.

 - snaNodeName=SSCP1A is the second relative distinguished name.

 - portID=0321-L is the third relative distinguished name.

Figure 6. Distinguished name composed of three relative distinguished names

Chapter 13. OSI object classes and VTAM resources 153

Table 9. Object names and shorthand distinguished names (continued)

Object name Shorthand distinguished names

appnRegisteredLu One of the following:

v snaNetID=netid; snaNodeName=CPname; nonLocalResourceName=netid.regLUname

v snaNetID=netid; snaNodeName=CPname; nonLocalResourceName=regLUname

logicalUnitIndex One of the following:

v snaNetID=netid; snaNodeName=CPname; logicalUnitIndexName=netid.LUname

v snaNetID=netid; snaNodeName=CPname; logicalUnitIndexName=LUname

luGroup snaNetID=netid; snaNodeName=CPname; luGroupName=USERVAR or generic resource

name

luCollection One of the following:

v snaNetID=netid; snaNodeName=CPname; luCollectionId=luCollection

v snaNetID=netid; snaNodeName=CPname; linkName=PUname;

luCollectionId=luCollection

port snaNetID=netid; snaNodeName=CPname; portId = LINEname

logicalLink One of the following:

v snaNetID=netid; snaNodeName=CPname;

linkName=linkstation_name or PUname

v snaNetID=netid; snaNodeName=CPname;

linkName=netid.linkstation_name or netid.PUname

virtualRoute snaNetID=netid; snaNodeName=CPname; virtualRouteId=

netid.originSubareaNumber.destSubareaNumber.virtualRouteNumber.

transmissionPriority

appnTransmissionGroup snaNetID=netid; snaNodeName=CPname;

transmissionGroupId=TGN.partner_NETID.partner_CPNAME

subareaTransmissionGroup (See note 4.) One of the following:

v snaNetID=netid; snaNodeName=CPname;

transmissionGroupId=local_subarea.TGN.partner_NETID.

partner_subarea.partner_node

v snaNetID=netid; snaNodeName=CPname; snaNodeName=NCPname;

transmissionGroupId=local_subarea.TGN.partner_NETID.

partner_subarea.partner_node

definitionGroup snaNetID=netid; snaNodeName=CPname;

definitionGroupName=mjnode_type.mjnode_name

snaNetwork snaNetID=netid; snaNodeName=CPname; graphid=(string "SnaNetwork")

snaLocalTopo snaNetID=netid; snaNodeName=CPname; graphid=(string "SnaLocalTopology")

Notes:

1. This object is identified by a role attribute, which is a pointer that consists of

the distinguished name of the object, but the object actually does not reside on

the local node.

2. A CDRM name is not required to match the real SSCP name of the type 5 node

it represents. CDRMs might be defined such that the network identifier is

known and unchangeable. Therefore, CDRM objects are named using the

CDRM name defined to VTAM. A CDRM with a predefined network identifier

includes the network identifier in the last RDN™. A CDRM without a

predefined network identifier does not include the network identifier in the last

RDN. The real name and network identifier of the adjacent SSCP are available

in the realSSCPname attribute when the CDRM is active.

3. A CDRSC that represents a predefined alias does not include a network

identifier in the last RDN because the network identifier can change. A CDRSC

with a predefined network identifier includes the network identifier in the last

RDN. The CDRSC name used in this RDN is the name that was predefined for

154 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

the CDRSC. This name is not necessarily the same as the real name of the

resource that the CDRSC maps. The real name and network identifier of the

resource is provided in the cdrscRealLUname attribute of the crossDomainResource

object.

4. Partner_node name for subarea transmission groups can be formed from the

subarea number if the contacted subarea node does not provide its name in the

X'0E' control vector on contacted.

OSI object states

Among the many attributes contained within the managed objects, some of the

most important attributes are the state attributes. The state attributes consist of the

six attributes defining the OSI states, as documented in the ISO/IEC 10164-2

standard, in addition to a seventh state, which represents the normal VTAM

resource status.

Each OSI state attribute is described in the following list:

v Operational state attribute

Indicates whether a resource is operational, according to the following values:

Enabled

The resource is partially or fully operational and available for use.

Disabled

The resource is not partially or fully operational and is not available for

use.
v Usage state attribute

Indicates whether a resource is in use, according to the following values:

Idle The resource is not in use.

Active The resource is in use and has sufficient spare operating capacity to

provide for additional users simultaneously.

Busy The resource is in use and it has no spare operating capacity to provide

for additional users at this instance.
v Administrative state attribute

Indicates whether a resource is allowed to perform functions. The administrative

state of a managed object is determined separately from the operational and

usage states. Administrative state can have the following values:

Unlocked

The resource is permitted to perform services for its users.

Locked

The resource is prohibited from performing services for its users.

Shut down

Only existing instances are permitted to use the resource.
v Procedural status attribute

This attribute is supported by only those classes of managed objects that

represent some procedure (for example, a test process) that progresses through a

sequence of phases. The procedural status attribute can have the following

values:

Not initialized

Indicates that the resource must be initialized before it can perform

normal functions. The initialization procedure has not been started.

Chapter 13. OSI object classes and VTAM resources 155

Initializing

Indicates that the resource must be initialized before it can perform

normal functions. The initialization procedure has been started, but is

not yet complete.

Terminating

Indicates that this resource is in a termination phase.
v Availability status attribute

Offline

Indicates that the resource requires a routine operation to place it online

and make it available for use.

Intest Indicates the resource is undergoing a test procedure.

Degraded

Indicates overuse of cycles or buffers.

Dependency

Indicates that a higher-level resource is in a state of transition, either up

or down. For related information on dependency, refer to

“ACTION(snapshot) update merging” on page 168.

Failed Indicates that a resource is inoperative.
v Unknown status attribute

Indicates that the state of the resource represented by the managed object is

unknown. When the unknown status attribute value is true, the value of the

state attribute cannot reflect the actual state of the resource.

v Native status attribute

Indicates the VTAM internal state of the resource.

Mapping VTAM status to OSI states

The topology agent maps the existing status of VTAM resources to OSI states when

the topology agent reports object data. For traditional subarea resources, the

mapping is straightforward; however, for some APPN resources, a VTAM status

does not exist.

Table 10 shows how VTAM resource status is mapped to OSI states. Table 11 on

page 158 shows the valid combinations of OSI states for the resources with no

applicable VTAM status.

OSI states for VTAM resources with VTAM status

In Table 10, to find the OSI state for a VTAM resource with a particular VTAM

status, find the status in the first column. Follow the row across until it intersects

with the column for your VTAM resource. The abbreviation in that cell of the table

indicates the OSI state that is assigned. Look up that abbreviation in the list of

abbreviations at the end of the table.

 Table 10. VTAM resource status to OSI atates

VTAM resource

status Native status NCP CDRM LU and CDRSC

Type 2 PU and

type 2.1 PU Link station Line

VTAM

agent host

ACT ACT uea uea uei uea uea uea uea

ACT/S ACT/S N/A N/A uea N/A N/A N/A N/A

INACT INACT udi udi udi udi udi udi N/A

156 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 10. VTAM resource status to OSI atates (continued)

VTAM resource

status Native status NCP CDRM LU and CDRSC

Type 2 PU and

type 2.1 PU Link station Line

VTAM

agent host

INACTIVE

(INOP) (See

note 1)

INACTIVE udi-fl udi-fl udi-fl

 (for LUs)

udi

 (for CDRSCs)

udi-fl udi-fl udi-fl N/A

INACTIVE

(NEVAC)

NEVAC udi-ni udi-ni udi-ni udi-ni udi-ni udi-ni N/A

PND-ACT PND-ACT udi-in udi-in udi-in udi-in udi-in udi-in N/A

PND-INACT PND-INACT uea-tm uea-tm uea-tm uea-tm uea-tm uea-tm N/A

CONNECT-

ABLE

CONNECT-

ABLE

N/A N/A uei-ol (Switched

resources only)

uei-ol (Switched

resources only)

N/A N/A N/A

ROUTABLE ROUTABLE N/A N/A uei-it uei-it N/A N/A N/A

ROUTABLE

(released)

ROUTABLE N/A N/A uei-it-ol uei-it-ol N/A N/A N/A

ACTIVE

(congested)

ACTIVE ueb N/A N/A ueb N/A N/A N/A

ACT DISABLE N/A N/A uei-po N/A N/A N/A N/A

INACTIVE

(released)

RELEASED udi-ol N/A udi-ol udi-ol udi-ol udi-ol N/A

INACTIVE

(reset)

RESET udi-unkwn udi-unkwn udi-unkwn udi-unkwn udi-unkwn udi-unkwn N/A

PND-INACT

(reset)

PND-INACT uea-tm-

unkwn

uea-tm-

unkwn

uea-tm- unkwn uea-tm- unkwn uea-tm-

unkwn

uea-tm-

unkwn

N/A

Note:

The OSI states and statuses are from the ISO/IEC 10164-2 standard. The

states are listed in the following order:

v Administrative state (administrativeState)

v Operational state (operationalState)

v Usage state (usageState).

For a description of the states, refer to “OSI object states” on page 155.

OSI status Description

uea Unlocked Enabled Active

ueb Unlocked Enabled Busy

uei Unlocked Enabled Idle

udi Unlocked Disabled Idle

-tm proceduralStatus = terminating

-ol availabilityStatus = offline

-fl availabilityStatus = failed

-it availabilityStatus = in test

-po availabilityStatus = power off

-in proceduralStatus = initializing

-ni proceduralStatus = not initialized

-unkwn unknownStatus = unknown

N/A Not Applicable

Footnotes for the table entries:

1. A resource is considered INOP when the VTAM display of the resource shows

INOP. In most cases, the internal VTAM status of an INOP resource is

INACTIVE. However, it is possible to have other status values also showing

INOP. Therefore, the availabilityStatus value failed might appear with

nativeStatus values other than INACTIVE.

Chapter 13. OSI object classes and VTAM resources 157

2. An additional value of dependency might be added to the availabilityStatus

attribute if a higher-level resouce is in transition.

3. NCP slow down indication always forces usage state=busy.

OSI states for VTAM resources without VTAM native status

For information about the status of APPN network nodes and transmission groups,

refer to Table 11. Note that the nativeStatus attribute does not apply to these

resources.

 Table 11. OSI states for VTAM resources without native status

VTAM resource OSI state

appnTG uea

uea-tm

udi

udi-ol

networkNode or interchange node (As

reported in snaNetwork APPN network

topology.)

uea

uea-tm

ueb

ueb-tm

uea-dg

ueb-dg

udi-ol

Description of the OSI resource statuses:

The OSI states and statuses are from the ISO/IEC 10164-2 standard. The states are listed in

the following order:

v Administrative state (administrativeState)

v Operational state (operationalState)

v Usage state (usageState)

For a description of the states, refer to “OSI object states” on page 155.

OSI Status

Description

uea Unlocked Enabled Active

ueb Unlocked Enabled Idle

udi Unlocked Disabled Idle

-dg availabilityStatus = degraded

-tm proceduralStatus = terminating

-ol APPN garbage collection indicator

158 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 14. OSI operations

This chapter describes the OSI operations that are performed on the objects that

were described under Chapter 13, “OSI object classes and VTAM resources,” on

page 151. The following topics are included:

v Introduction to the CMIP verbs that are used to specify the operations and

overview of the VTAM topology agent processing of the operations

v Overview of types of responses the VTAM topology agent provides to an input

CMIP request

v High-level description of the resource-monitoring process using an

ACTION(snapshot) operation

The details of the specific monitoring capabilities of the VTAM topology agent are

provided under Chapter 15, “VTAM topology monitoring,” on page 171.

Specifying OSI operations with CMIP verbs

The set of OSI operations, specified by CMIP verbs, is used to collect topology data

about VTAM resources represented as object instances.

Not all object classes are supported for all operations; in some cases, object classes

are supported only for response data and not for request data.

Performing an operation on an object instance usually involves a manager

application program sending a CMIP request message (ROIV) to the object. The

message contains an indication of the type of operation being requested, as well as

other data related to the requested operation. The VTAM topology agent receives

the request message, performs the requested operation, and generates and sends a

CMIP response message to the manager application program. This sequence is

altered slightly when objects send unsolicited messages or requests that provide

information about an event that has occurred.

A given operation is either confirmed or unconfirmed. A confirmed operation is one

that requires that a response be returned to the application program that issued the

request. An unconfirmed operation is one for which there can be no response.

The following operations, supported by the VTAM topology agent, are described in

more detail in the following sections:

v GET

v CANCEL-GET

v ACTION

v EVENT-REPORT

v SET

v DELETE

v Other operations

GET

GET is a confirmed request that is issued by a manager application program. The

request is directed to an object instance, requesting the return of attribute data for

that object instance. The GET response contains the requested attribute data.

© Copyright IBM Corp. 1995, 2005 159

CANCEL-GET

CANCEL-GET is a confirmed request that is issued by a manager application

program. The function of this operation is to terminate the processing of a GET

request previously issued by this manager application program. The CANCEL-GET

response message contains only an indication of whether the GET request was

successfully terminated.

ACTION

The ACTION operation has two types: confirmed and unconfirmed. The types are

usually specified as:

v ACTION, which is unconfirmed

v ACTION-CONFIRMED, which is confirmed

This discussion refers only to ACTION-CONFIRMED. ACTION is a multi-function

operation. The ACTION request is requesting the target object to do one of a set of

possible functions. The particular function being requested is specified by the

detailed actionType data contained in the request. The VTAM topology agent

supports only one type of action, ACTION(snapshot). The ACTION(snapshot).

operation is a request directed to one of a set of special objects, requesting the

return of a set of topology data. The type and amount of data returned varies,

depending upon the class of object that is the target of the request.

SET

The SET operation has both confirmed and unconfirmed types. The SET request is

directed to an object instance, requesting that specified attributes for that object be

set to values provided in the SET request. The VTAM topology agent does not

support the setting of VTAM resource data by using the CMIP SET operation.

However, the VTAM topology agent does respond to any confirmed SET request it

receives. For a discussion of error responses, refer to “Responding to CMIP

requests” on page 161.

DELETE

DELETE is a confirmed operation directed to an object instance. The intended

function of the DELETE operation is to request that an object instance be deleted.

The DELETE response contains an indication of whether the object was actually

deleted. The VTAM topology agent does not support the deletion of VTAM

resources by using the CMIP DELETE operation. However, the VTAM topology

agent does respond to any DELETE request it receives. (See error discussion,

“Responding to CMIP requests” on page 161.)

Other operations

Examples of other OSI operations include create, linked-reply, and other types of

ACTION. Although the create and linked-reply operations are valid, there is no

situation in which the VTAM topology agent can receive these operations. Other

types of ACTIONs can be received by the VTAM topology agent.

The create request is used to create a new instance of a specified object class. For

CMIP services to route a create request, an application program must have

registered as a create-handler for the requested object class. The VTAM topology

agent does not register as a create-handler for any object class, so CMIP services

never routes a create request to the topology agent.

160 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

The linked-reply operation is a request, but it is better described as part of a

multiple-message reply. The responses for some requests might require multiple

messages. All of the messages except the last message of a multiple message reply

are linked-reply operations. A linked-reply message must refer to the original

request message for which this message is part of the reply. The VTAM topology

agent does not send any requests for which a linked-reply is returned, so the

topology agent never receives linked-reply operations. The VTAM topology agent

does, however, send linked-reply messages.

As mentioned before, there are a number of action types for the ACTION

operation other than snapshot. The VTAM topology agent does not support the

other action types, but the topology agent responds to any confirmed ACTION

request it receives. For a discussion of errors, refer to “Responding to CMIP

requests.”

Responding to CMIP requests

This section provides an overview of the types of responses, both positive and

negative, that the VTAM topology agent provides, given an input CMIP request.

Subsequent sections describe the details of monitoring VTAM resources by using

the CMIP requests.

A CMIP request message is really a form of a protocol data unit (PDU), as are the

various kinds of response messages. The following list provides a summary of the

types of PDUs used by the VTAM topology agent:

ROIVapdu

The ROIV message represents a request message and is usually an

unsolicited message. In one case, an ROIV represents one of a set of

linked-reply messages, but even in this case the ROIV is treated as a

request message. The ROIV request messages are either confirmed

(requiring a response) or unconfirmed (allowing no response), depending

on the particular operation being requested. The linked-reply ROIV

message might contain the requested response data, or it might contain an

indication that an error has occurred. All requests that are sent to the

VTAM topology agent are ROIV messages.

RORSapdu

The RORS message represents a final response message. It is sent only in

response to a previous ROIV request message and only if the ROIV request

requires a response message. An ROIV request message can have a

maximum of one RORS message sent in response. Therefore, if a request

requires multiple reply messages, all but the final reply messages must be

in the form of ROIV linked-reply messages. The VTAM topology agent

sends RORS messages in response to all confirmed requests that it receives,

when the subsequent processing is successful. An RORS message is also

sent if an error occurred and the error indication was sent as part of a

linked-reply ROIV message.

ROERapdu

The ROER message represents a negative response message. It is used to

indicate the unsuccessful processing for a request message. For the ROER

message to be used for a response, it must be the only message in the

response. Therefore, if one or more linked-reply ROIV messages are sent in

a response and then an error occurs, the ROER message cannot be used to

indicate the processing error. Instead, the error is indicated in an additional

linked-reply ROIV, followed by an RORS.

Chapter 14. OSI operations 161

Responding to GET ROIV messages

The VTAM topology agent can receive a GET ROIV request for any VTAM

resource, regardless of whether the resource exists. Whether the resource is valid or

not, all GET requests are valid, and the agent always responds with either a single

positive response (RORS) or a single negative response (ROER).

Responding to CANCEL-GET messages

The CANCEL-GET ROIV request, by virtue of being sent to the VTAM topology

agent from CMIP services, must refer to an existing, valid GET request. Two

responses are generated, an ROER for the GET request that is referred to,

indicating that the operation was cancelled, and an RORS for the CANCEL-GET

request indicating that this operation was completed successfully. If the

CANCEL-GET request is issued after the VTAM topology agent has processed the

GET request, then the response to the CANCEL-GET request is an ROER,

indicating that this operation could not be processed.

Responding to ACTION ROIV messages

An ACTION ROIV request can be valid or not valid. The VTAM topology agent

responds to ACTION requests that are not valid with a single negative response

(ROER). Valid ACTION requests are processed, but errors can still occur during

that processing. The VTAM topology agent can respond to valid ACTION requests

with either positive or negative responses. These responses, however, may not be

simple single messages; instead, they may involve a series of messages.

A typical positive response to an ACTION is a number of linked-reply ROIV

messages followed by a single ACTION response message (RORS). A negative

response to an ACTION request can be more complicated; the negative response

may take the form of the ROER, or it can be a linked-reply ROIV message that

contains specificErrorInfo data, followed by an RORS message.

The determination of which type of error response is used is dependent upon

whether any linked-reply ROIV messages with data have been sent. If no

linked-reply messages with data have been sent in response, an ROER is used for

the error response. If one or more linked-reply messages have been sent in

response to this ACTION request, then a linked-reply ROIV containing the

specificErrorInfo construct is sent, followed by an RORS response message.

EVENT-REPORT, SET, and DELETE messages

EVENT-REPORT messages are always sent as unconfirmed ROIV messages; these

ROIVs do not represent linked-replies, and it is not possible to include any error

information in them.

A SET ROIV request sent to the VTAM topology agent will result in either an

ROER or an RORS message, depending on the specific data in the request.

A DELETE ROIV request sent to the VTAM topology agent will always result in an

ROER response message.

162 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Monitoring resources with the ACTION(snapshot) operation

The ACTION(snapshot) operation can be used to collect current resource

information and to monitor future resource change information. This section

describes the general use of ACTION(snapshot) for resource monitoring. Chapter 15,

“VTAM topology monitoring,” on page 171 provides the details of using

ACTION(snapshot) to monitor specific kinds of VTAM resource data.

ACTION(snapshot) request

Similar to other operations, the ACTION(snapshot) request is sent to an object

instance. It differs from other operations in that the number of object classes that

support the ACTION(snapshot) operation is small. The classes that do support

ACTION(snapshot) represent collections of objects.

The following object classes support the ACTION(snapshot):

Object class

Description

snaLocalTopo

Represents the graph object that contains all of the resources owned by a

local VTAM. An ACTION request to this object is asking for the following

data:

v Local VTAM data

v Lines

v PUs

v Link stations

v Owned NCP data

v Contacted adjacent node data

v APPN and subarea TGs

snaNetwork

Represents the graph object that contains all of the network information

known at a VTAM node.

luCollection

Represents the collection object that contains all of the LU information

associated with a specific PU or the VTAM host.

logicalUnitIndex

Represents the collection object that contains the instances of a given LU

name known at a VTAM node or throughout the network. Note that an

ACTION on the logicalUnitIndex object is not considered a monitoring

function. It more closely resembles the function of the GET operation and

is discussed in detail with the GET operation instead of with the various

ACTION monitors.

In addition to the object class and object instance, the ACTION request includes a

segment called the actionInfoArg. This segment is a sequence of three possible

fields, of which any specific ACTION request can include a maximum of two of

the following fields:

start

Indicates that the ACTION request is to start a new snapshot operation. If this

field is present in the request, an additional token of information is included in

this field that is one of the following:

Chapter 14. OSI operations 163

oneTimeOnly

Indicates that the snapshot is requesting only initial data, that is, the

monitoring of future changes to resource data is not being requested.

ongoing

Indicates that both initial data and update data are being requested; this

includes the current resource information and future changes to this data.

stop

Indicates that the ACTION request is to stop a previous start ACTION request.

The start and stop fields are mutually exclusive; however, one of these two

fields must appear in a valid ACTION(snapshot) request. If the stop field is

present, an additional mandatory token is included after the stop token that

provides the invoke identifier of the start request that is to be terminated.

additional info (addlInfo)

Optionally specifies data that is specific to the target object. For example, both

snapshots for snaLocalTopo and snaNetwork might contain the

appnPlusSubareaParm parameter, which has an information value representing

either appnOnly or appnPlusSubarea. This field applies only if the start field is

included.

ACTION(snapshot) response

ACTION(snapshot) responses can be any of the following variations on PDU

content:

v Single RORS

If there is no snapshot data for the VTAM topology agent to supply and the

request is oneTimeOnly, the empty set might be returned in RORS message.

v Linked-reply and RORS

If the VTAM topology agent has snapshot data to provide, the response consists

of one or more linked-reply ROIV messages followed by an RORS message.

v Single ROER

If an error occurs and no data linked-reply ROIV messages are sent in response,

a single ROER message is sent in response, indicating the failure to process

successfully.

v Linked-reply error and RORS

If one or more linked-reply ROIV messages with data is sent in response before

an error occurs, an ROER message cannot be used. In this case, an additional

linked-reply ROIV is sent containing an indication of the error, followed by an

RORS message.

In a snapshot response message containing valid data, the basic unit of information

is a sequence of:

v vertex 1 (v1)

v vertex 2 (v2)

v endpoint 1 (e1)

Multiple sets of this sequence (v1, v2, e1) can occur within a snapshot response.

Each of the three components (v1, v2, e1) has the same basic syntactic structure.

However, the semantics and the actual structure of v1, v2, and e1 vary with the

different target objects of the snapshot.

The structure of each v1, v2, or e1 is as follows:

object Provides the distinguished name (DN) of the primary object instance being

164 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

reported in this component. If this component is vertex 1 or endpoint 1,

additional object instances might be reported elsewhere in the v1 or e1

string.

class Provides the object class of the instance identified in the object field.

states Provides a condensed, encoded form of the state attributes for the object

instance identified in the object field. The attributes are given in the

OCTET string form instead of the full attribute form. The state attributes,

their positions in the OCTET string, and the possible values are:

Octet State

0 operationalState

00 disabled

01 enabled

FF N/A or unchanged

1 usageState

00 idle

01 active

02 busy

FF N/A or unchanged

2 administrativeState

00 locked

01 unlocked

02 shuttingDown

FF N/A or unchanged

3 availabilityStatus

 Note that this attribute represents a SET, so it might have multiple

values; each value shown below represents a bit position. To show

multiple values, the bits representing the values are logically ORed

together.

00 noStatus

01 notInstalled

02 degraded

04 dependency

08 offDuty

10 offLine

20 powerOff

40 failed

80 inTest

FF N/A or unchanged

4 proceduralStatus

00 no status

08 terminating

10 reporting

20 initializing

40 not initialized

80 initialization required

FF N/A or unchanged

5 unknownStatus

00 false

01 true

FF N/A or unchanged

Chapter 14. OSI operations 165

6 nativeStatus

00 Active

01 Active with sessions

02 Inactive

03 Never active

04 pending active

05 pending inactive

06 Connectable

07 Routable

09 Congested

0A Released

0B Reset

0C Inop

FF N/A or unchanged

info Provides an optional set of attributes associated with the object instance

identified in the object field. The list of attributes provided varies with the

target snapshot object.

moreInfo

Provides for any additional information that is necessary; for example, for

the vertex 1 of a snaLocalTopo snapshot this field might contain a set of

object data specifying a port object.

reason Indicates why the snapshot update is being sent:

Value Description

deleted

Object is deleted.

addOrUpdate

Object is added or changed. The default is addOrUpdate.

ACTION(snapshot) initial data

The response data that is common to both an ongoing and a oneTimeOnly snapshot

is called initial data. The initial data provides the immediate view or snapshot of

the current resource data. For a oneTimeOnly snapshot, the initial data is the entire

set of data returned to the manager application program. For an ongoing snapshot,

the initial data is returned first, followed later by update data.

Initial data is returned in linked-reply ROIV messages, with the number of

messages varying according to snapshot type and configuration. The minimum

number of linked-replies is one; there is no maximum number.

When all initial data linked-replies have been sent, the VTAM topology agent must

notify the manager application program that the initial data is complete. The

VTAM topology agent provides two ways for a manager application program to

determine that initial data is complete:

v If the snapshot is ongoing, after all linked-replies with initial data are sent, the

VTAM topology agent sends one additional linked-reply message with no

snapshot data in it, called the empty set linked-reply. The purpose of this

message is to indicate that the transfer of initial data is now complete. This

special linked-reply is identified by the value of the actionReplyInfo field being

(). All (v1,v2,e1) data is reported in the actionReplyInfo section of the snapshot

response, so the absence of data in this field indicates no more initial data.

166 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

v If the snapshot is oneTimeOnly, following the linked-replies of initial data, an

empty set linked-reply is sent to indicate initial data transfer is complete. Next,

an RORS message is sent to indicate that processing for the entire request is

complete.

ACTION(snapshot) update data

Snapshot updates consist of:

v Changes to resource information that was previously reported in initial data

v Resource information not reported in initial data that is newly defined or

learned by VTAM

Update data is reported only for ongoing snapshots. It is never reported for

oneTimeOnly snapshots. Other than being reported later than initial data, following

the empty set linked-reply, there is little difference between initial data and update

data. The syntax is the same, but the VTAM topology agent generally provides less

data in the update data than in the initial data.

The update data is reported in linked-replies that might contain multiple sets of

(v1, v2, e1) data. When a topology update occurs, an update is generated and

formatted into a response string. However, the VTAM topology agent does not

immediately send every update string to the manager application program.

Instead, the VTAM topology agent attempts to use storage efficiently by filling the

snapshot buffer. The VTAM topology agent might wait a short period of time to see

if more update data is generated. If more updates are generated, the updates are

added to the existing snapshot response. If no updates occur within the time

interval (1 second), the existing snapshot response is sent to the manager

application program.

Update data is generated by the VTAM topology agent for these reasons:

v An object is created.

A resource that is within the scope of a given snapshot becomes known to VTAM

and there is an ongoing snapshot in the update phase. The creation of the object

is reported as update data.

v An object is deleted.

A resource previously reported within a given snapshot is no longer known to

VTAM. The resource might be deleted because a major node was inactivated or

a connection was removed. This change is reported as an object deletion in

update data.

v An object changes state.

A resource previously reported within a given snapshot has changed state. It is

important to note that the state that has changed is the VTAM internal state; this

state is mapped to the set of state attributes that are reported for the object.

Since several VTAM internal states are mapped to the same set of state attribute

values, there is no guarantee that any of the seven state attributes changed,

although it is likely.

Although VTAM in general does not report updates when attribute values change,

there are exceptions. In cases where significant data associated with a reported

resource has changed, updates are sent to report new attribute values, even if the

state of the resource does not change.

Chapter 14. OSI operations 167

ACTION(snapshot) update merging

As noted previously, one of the reasons for reporting topology update data is

resource state changes. Of the state changes that occur for resources, many of the

resulting states are transient in nature. That is, the resource is in transition from

one state to another, but the transition is through a series of intermediate states.

These intermediate states are usually brief and are considered less important than

the resting states.

Since the number of updates reporting transient state changes can be large, the

VTAM topology agent suppresses the intermediate updates. This process is called

merging, since the intermediate updates are merged instead of discarded.

Updates that can be merged are:

v snaLocalTopo

v snaNetwork, for CDRMs only

v luCollection (with some exceptions)

luCollection updates for independent LUs in a snapshot directed at a specific PU are

not merged. snaNetwork updates for APPN network data are not merged.

Updates for resources moving to transient states are merged until an update is

received that shows the resource moving to a resting state. The resting state update

is merged, and the final, merged update is sent.

It is possible for resources to stay in transient states too long; for example, when

an error occurs and a resource is hung in a state that is not a resting state. The

VTAM topology agent periodically looks for updates that have been held too long;

when these are found, they are sent.

The UPDDELAY start option controls the maximum length of time that VTAM

waits before looking for resource updates that have been in transient states too

long. This start option specifies the maximum number of seconds to wait before

looking for resources that are hung. Note that decreasing the value for UPDDELAY

might force VTAM to look for these resources more often, but does not necessarily

imply that resources are reported any faster. The time specified in the UPDDELAY

start option does not affect the computing of whether a resource has stayed in a

transient state too long. That computing is not controllable and is based primarily

on recent updates statistics.

Although a given type of snapshot update is eligible to be merged, in some cases,

individual updates are not merged.

EVENT-REPORT data is also subject to the merge process.

By design, the merge process suppresses intermediate state data; however, there is

one case where the loss of intermediate state data is not acceptable. The

availabilityStatus attribute reports the value of dependency when a higher-level

resource is in transition. When updates are merged, the newest state data generally

replaces the older state data, but for the dependency information this is not the

case. The VTAM topology agent preserves the dependency information from all

updates that are merged to a single update by performing the logical OR operation

on the dependency information from all updates. The result is that if any of the set

of merged updates have the dependency flag set for a resource, the reported

(merged) update reports the dependency in the availabilityStatus attribute.

168 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

ACTION(snapshot) termination

If the start request for the ACTION(snapshot) is for a oneTimeOnly snapshot, then it

is not necessary to issue a stop request. The oneTimeOnly snapshot stops itself when

the initial data transfer is complete. The ongoing snapshots, however, must be

explicitly stopped by using an additional ACTION(snapshot) request that specifies

stop instead of start. The stop request must indicate which snapshot request should

be terminated by including the invoke identifier of the start snapshot request.

Upon receiving a stop ACTION(snapshot) request, the VTAM topology agent

suspends the reporting of update data, responds to both the start request and the

stop request, and terminates processing for both requests. Note that the stop

request is not processed until the transfer of the initial data for the target snapshot

is complete.

Chapter 14. OSI operations 169

170 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 15. VTAM topology monitoring

This chapter describes the details of the specific monitoring capabilities of the

VTAM topology agent. The following topics are included:

v Requesting and monitoring network data (snaNetwork)

v Requesting and monitoring local topology (snaLocalTopo)

v Requesting and monitoring LU data (luCollection)

v Monitoring resources through event reports

Requesting and monitoring network data (snaNetwork)

This section contains the following topics:

v “Overview”

v “Action request”

v “Initial data response” on page 172

v “Update data response” on page 172

v “Action termination” on page 173

v “snaNetwork snapshot data (APPN data)” on page 174

v “snaNetwork snapshot data (subarea data)” on page 175

v “snaNetwork snapshot example” on page 177

Overview

This section describes the action that is used to request monitoring and stop

monitoring network data for the snaNetwork managed object class.

Management of the network requires that a manager application program be able

to request the names of all nodes and APPN transmission groups and virtual

routes that connect any two nodes and to be able to monitor their status.

Operations against snaNetwork can be directed at the following VTAM topology

agent host node types:

v Interchange node

v Network node

v Migration data host

v Pure type 5 node

Note: Pure end nodes cannot provide snaNetwork data and fail the request with an

ROER response.

Action request

A snapshot action request is used to request network data from the VTAM topology

agent. The action is sent as an m-Action-Confirmed operation.

The manager application program can request that any future updates to the

snaNetwork snapshot object to be returned, as they occur by specifying ongoing in

the request. The network data can be requested without updates by specifying the

oneTimeOnly value in the request.

The manager application program can specify the appnPlusSubareaParm in the

additional information field. The value, either 0 or 1, represents either appnOnly (0),

© Copyright IBM Corp. 1995, 2005 171

which means to request APPN network data, or appnPlusSubarea (1), which means

to request both APPN and subarea network data. The default value is appnOnly if

the appnPlusSubareaParm is not specified.

The target resource is the only object instance of the snaNetwork object class at the

VTAM topology agent. Following is the example of an ongoing, appnPlusSubarea

snaNetwork snapshot request:

 msg CMIP-1.ROIVapdu (invokeID 196610, opera

 tion-value 7, argument (baseManagedObjectClass 1.3.18.0.0.21

 51,baseManagedObjectInstance (distinguishedName (RelativeDis

 tinguishedName (AttributeValueAssertion (attributeType 1.3.1

 8.0.2.4.6, atributeValue NETA)), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0.2032, attr

 ibuteValue SSCP1A)), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2216, attributeValue (

 string "SnaNetwork"))))),actionInfo (actionType 1.3.18.0.0.2

 222,actionInfoArg (start ongoing, addlInfo ((identifier 1.3.

 18.0.0.2164, significance TRUE, information 1))))))

Initial data response

The interchange node or network node provides the APPN network data that is

current at the time the operation is processed. The APPN network data includes

information about network nodes, interchange nodes, border nodes, virtual routing

nodes, and transmission groups (TGs) that connect the APPN nodes. A connection

between nodes A and B is reported once for each direction: from Node A to Node

B and from Node B to Node A.

The migration data host nodes, type 5 nodes and interchange nodes provide the

subarea network data that is current at the time the operation is processed. The

subarea network data includes information about the local VTAM agent host,

cross-domain resource managers, and virtual routes that connect the subarea

nodes.

Interchange nodes are the only nodes that provide both APPN and subarea data.

If the oneTimeOnly snapshot action is requested, the initial data is returned in action

linked-replies. To indicate that the initial data for the entire set of network data has

been returned, the VTAM topology agent sends an additional ROIV action

linked-reply that is an empty set linked-reply. Following the empty set is an RORS

message.

If the ongoing snapshot action is requested, all the initial data is returned in action

linked-replies, just as for the oneTimeOnly snapshot action and is followed by an

empty-set linked-reply. The VTAM topology agent is then ready to process updates

for the snaNetwork object.

Update data response

When the ongoing snapshot action has been issued and is currently in effect, the

following changes cause updates to the snaNetwork object, which result in the

sending of a snaNetwork snapshot linked-reply:

v Any status changes for a node or APPN transmission group (TG)

v Changes in the characteristics of a node or APPN TG

v Creation, deletion, or state change of a cross-domain resource manager

172 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Updates for the snaNetwork object for subarea network data might be merged with

related updates by the VTAM topology agent before being written to the snapshot

linked-replies.

Action termination

The VTAM topology agent terminates an ongoing snaNetwork snapshot action under

the following conditions :

v A stop snapshot action request is received.

v An error occurs during snapshot processing in VTAM.

v The association between the local CMIP services and the manager application

program’s CMIP services terminates.

The following is an example of a valid stop snapshot action request :

 msg CMIP-1.ROIVapdu (invokeID 196612,

 operation-value 7, argument (baseManagedObjectCl

 ass 1.3.18.0.0.2151, baseManagedObjectInstance (d

 istinguishedName (RelativeDistinguishedName (Attr

 ibuteValueAssertion (attributeType 1.3.18.0.2.4.6

 , attributeValue "NETA")), RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.0.2032, attributeValue "SSCP1A")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2216, attributeValue (string "S

 naNetwork"))))), actionInfo (actionType 1.3.18.0.

 0.2222, actionInfoArg (stop 196610))))

The stop request in the previous example looks much like the associated start

request except for the actionInfoArg portion of the request. For the stop request

the stop keyword is used along with the invoke identifier of the start request that

is to be terminated.

The result of the VTAM topology agent’s processing of a stop request is three

messages :

v An empty-set linked-reply for the start request

v An RORS response to the start request

v An RORS response to the stop request

The following shows examples of these three messages:

First, the empty-set linked reply:

(Note that the associated invoke identifier in a linked-reply is given in the

linked-ID field.)

 msg CMIP-1.ROIVapdu (invokeID

 1, linked-ID 196610, operation-value 2, argument

 (actionResult (managedObjectClass 1.3.18.0.0.215

 1, managedObjectInstance (distinguishedName (Rela

 tiveDistinguishedName (AttributeValueAssertion (a

 ttributeType 1.3.18.0.2.4.6, attributeValue "NETA

 ")), RelativeDistinguishedName (AttributeValueAss

 ertion (attributeType 1.3.18.0.0.2032, attributeV

 alue "SSCP1A")), RelativeDistinguishedName (Attri

 buteValueAssertion (attributeType 1.3.18.0.0.2216

 , attributeValue (string "SnaNetwork"))))), actio

 nReply (actionType 1.3.18.0.0.2222, actionReplyIn

 fo ()))))

Next, the RORS for the start request :

Chapter 15. VTAM topology monitoring 173

msg CMIP-1.RORSapdu (invokeID

 196610)

Finally, the RORS for the stop request:

 msg CMIP-1.RORSapdu (invokeID

 196612, resultOption (operation-value 7, result

 (managedObjectClass 1.3.18.0.0.2151, managedObjec

 tInstance (distinguishedName (RelativeDistinguish

 edName (AttributeValueAssertion (attributeType 1.

 3.18.0.2.4.6, attributeValue "NETA")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2032, attributeValue "SSCP1A"))

 , RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.0.2216, attributeValu

 e (string "SnaNetwork"))))), actionReply (actionT

 ype 1.3.18.0.0.2222, actionReplyInfo ()))))

snaNetwork snapshot data (APPN data)

For APPN network topology data, the linked-replies for snaNetwork are made up of

multiple instances of the following sequence:

vertex1 --Origin node of the transmission group

vertex2 --Destination node of the transmission group

endpoint1 --Transmission group between vertex1 and vertex2

In general, the data structure of vertex1, vertex2, and endpoint1 is as follows:

vertex1

 object --object distinguished name

 class --object class

 states --OSI states of this object

 info

 resourceSequenceNumber --object attribute

 appnNodeCapabilities --object attribute

 extendedAppnNodeCapabilities --object attribute

 --(reported only for central

 --directory server nodes)

vertex2

 object --object distinguished name

 class --object class

endpoint1

 object --object distinguished name

 class --object class (APPN TG)

 states --OSI states of this object

 info,

 resourceSequenceNumber --object attribute

 appnTGCapabilities --object attribute

 cp-cpSessionSupport --object attribute

The format of vertex1 differs according to the data received. When vertex2 or

endpoint1 is the main reason for an update, vertex1 shows only the following:

vertex1

 object --object distinguished name

 class --object class

The following list includes descriptions of what is contained in vertex1, vertex2,

and endpoint1.

vertex1

Data reported for a single node object for either initial data or for a single

update for the object. Vertex 1 is considered the origin of the TG specified

in endpoint 1.

174 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

object Distinguished name of origin node resource

class Objects related to the monitored node are reported under the

following object classes:

v appnNN

v interchangeNode

v virtualRoutingNode

states 14-character string for the OSI states:

v operationalState

v usageState

v administrativeState

v availabilityStatus

v proceduralStatus

v unknownStatus

v nativeStatus (nativeStatus is always N/A for the APPN

snaNetwork data.)

info Set of attributes for the node object. This field is missing from

vertex1 if vertex2 or endpoint1 is the main reason for the update.

vertex2

Contains all data reported for a single node object for either initial data or

a single update for the object. Vertex 2 is considered the destination of the

TG specified in endpoint 1.

object Distinguished name of destination node resource.

class Objects related to the monitored node are reported under the

following object classes:

v appnNN

v virtualRoutingNode

Note that interchange nodes are reported in class appnNN in vertex

2.

endpoint1

Contains data for a TG that connects vertex1 and vertex2.

object Distinguished name of TG resource.

class Monitored transmission group object is reported under the

appnTransmissionGroup object class.

states Consists of a 14-character string for the OSI states. (nativeStatus is

always N/A for the APPN snaNetwork data.)

info Set of attributes for the transmission group object.

Note that the reason field is always omitted for APPN data and should always

assume the default value of addOrUpdate.

snaNetwork snapshot data (subarea data)

For subarea network topology data, the linked-replies for snaNetwork contain data

made up of multiple instances of the following sequence:

vertex1 --Adjacent SSCP (CDRM)

vertex2 --Local VTAM

endpoint1 --Virtual route supporting active CDRM

VTAM provides the long form of vertex1 when it reports initial data or object

creation such as for the activation of a new CDRM major node. VTAM provides

the short form of vertex1 when it reports changes or deletions.

Chapter 15. VTAM topology monitoring 175

In general, the data structure of vertex1, vertex2, and endpoint1 is as follows:

vertex1

 object --object distinguished name

 class --object class (CDRM)

 states --OSI states of this object

 info

 dependencies --object attribute

 realSSCPname --object attribute

 reason --reason for this vertex1 to be reported

vertex2

 object --object distinguished name (local VTAM)

 class --object class

endpoint1

 object --object distinguished name

 class --object class (VR)

The following list explains what the fields contain.

vertex1

Contains all data reported for a single node object for either initial data or

a single update for the object (CDRM).

object Distinguished name of CDRM resource

class Monitored node objects are reported under the

crossDomainResourceManager object class.

states Consists of a 14-character string for the OSI states

info Set of attributes for the CDRM related object.

reason Indicates why the snapshot update is being sent.

Note: The reason field is omitted when the intended value is

addOrUpdate.

Value Description

deleted

Object is deleted.

addOrUpdate

Object is added or changed. The default is

addOrUpdate.

vertex2

Reports on the local VTAM agent host.

object Distinguished name of local VTAM agent host.

class Always reported as t5node object class.

endpoint1

Contains all data reported for a single virtual route object for either initial

data or a single update for the virtual route.

object Distinguished name of the virtual route.

class Monitored virtual route objects are reported under the virtualRoute

object class.

To see the vertex1 entries that are included in each type of subarea snapshot action,

refer to Table 12 on page 177.

176 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 12. vertex1 entries for CDRM reported objects. Object creation means the creation of

a new CDRM.

Initial data

Object

creation

Object

state

change

Object

attribute

change

Object

deletion

object X X X X X

class X X X X X

states X N/A X X N/A

info X X X X X

dependencies X X X X N/A

realSSCPname X X X N/A N/A

reason N/A N/A N/A N/A X

snaNetwork snapshot example

The following example shows the initial data response for appnPlusSubarea

snaNetwork snapshot of the following configuration, where SSCP2A is defined to

SSCP1A as a CDRM and an APPN TG is active between SSCP1A and SSCP2A.

 (Interchange node)

 SSCP1A -------------------- SSCP2A

 APPN TG 21 (Interchange node)

 msg CMIP-1.ROIVapdu (invokeID

 131074, linked-ID 196610, operation-value 2, arg

 ument (actionResult (managedObjectClass 1.3.18.0.

 0.2151, managedObjectInstance (distinguishedName

 (RelativeDistinguishedName (AttributeValueAsserti

 on (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "SSCP1A")), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0

 .2216, attributeValue (string "SnaNetwork"))))),

 actionReply (actionType 1.3.18.0.0.2222, actionRe

 plyInfo ((vertex1 (object (distinguishedName (Rel

 ativeDistinguishedName (AttributeValueAssertion (

 attributeType 1.3.18.0.2.4.6, attributeValue "NET

 A")), RelativeDistinguishedName (AttributeValueAs

 sertion (attributeType 1.3.18.0.0.2032, attribute

 Value "SSCP1A")))), class 1.3.18.0.0.1826, states

 010101000000FF, info (Attribute (attributeId 1.3

 .18.0.0.2019, attributeValue 2), Attribute (attri

 buteId 1.3.18.0.0.1940, attributeValue 3348))), v

 ertex2 (object (distinguishedName (RelativeDistin

 guishedName (AttributeValueAssertion (attributeTy

 pe 1.3.18.0.2.4.6, attributeValue "NETA")), Relat

 iveDistinguishedName (AttributeValueAssertion (at

 tributeType 1.3.18.0.0.2032, attributeValue "SSCP

 2A")))), class 1.3.18.0.0.1822), endpoint1 (objec

 t (distinguishedName (RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.2

 .4.6, attributeValue "NETA")), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType 1

 .3.18.0.0.2032, attributeValue "SSCP1A")), Relati

 veDistinguishedName (AttributeValueAssertion (att

 ributeType 1.3.18.0.0.2044, attributeValue "21.NE

 TA.SSCP2A")))), class 1.3.18.0.0.1823, states 010

 101000000FF, info (Attribute (attributeId 1.3.18.

 0.0.2019, attributeValue 2), Attribute (attribute

Chapter 15. VTAM topology monitoring 177

Id 1.3.18.0.0.1941, attributeValue 00), Attribute

 (attributeId 1.3.18.0.0.1958, attributeValue TRU

 E)))), (vertex1 (object (distinguishedName (Relat

 iveDistinguishedName (AttributeValueAssertion (at

 tributeType 1.3.18.0.2.4.6, attributeValue "NETA"

)), RelativeDistinguishedName (AttributeValueAsse

 rtion (attributeType 1.3.18.0.0.2032, attributeVa

 lue "SSCP2A")))), class 1.3.18.0.0.1826, states 0

 10101000000FF, info (Attribute (attributeId 1.3.1

 8.0.0.2019, attributeValue 2), Attribute (attribu

 teId 1.3.18.0.0.1940, attributeValue 3348))), ver

 tex2 (object (distinguishedName (RelativeDistingu

 ishedName (AttributeValueAssertion (attributeType

 1.3.18.0.2.4.6, attributeValue "NETA")), Relativ

 eDistinguishedName (AttributeValueAssertion (attr

 ibuteType 1.3.18.0.0.2032, attributeValue "SSCP1A

 ")))), class 1.3.18.0.0.1822), endpoint1 (object

 (distinguishedName (RelativeDistinguishedName (At

 tributeValueAssertion (attributeType 1.3.18.0.2.4

 .6, attributeValue "NETA")), RelativeDistinguishe

 dName (AttributeValueAssertion (attributeType 1.3

 .18.0.0.2032, attributeValue "SSCP2A")), Relative

 DistinguishedName (AttributeValueAssertion (attri

 buteType 1.3.18.0.0.2044, attributeValue "21.NETA

 .SSCP1A")))), class 1.3.18.0.0.1823, states 01010

 1000000FF, info (Attribute (attributeId 1.3.18.0.

 0.2019, attributeValue 2), Attribute (attributeId

 1.3.18.0.0.1941, attributeValue 00), Attribute (

 attributeId 1.3.18.0.0.1958, attributeValue TRUE)

))), (vertex1 (object (distinguishedName (Relativ

 eDistinguishedName (AttributeValueAssertion (attr

 ibuteType 1.3.18.0.2.4.6, attributeValue "NETA"))

 , RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.0.2032, attributeValu

 e "SSCP1A")), RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 1.3.18.0.0.2032, a

 ttributeValue "NETA.SSCP1A")))), class 1.3.18.0.0

 .2278, states 01010100000000, info (Attribute (at

 tributeId 1.3.18.0.0.2194, attributeValue (depend

 ents (and (Dependents (item (distinguishedName (R

 elativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.2.4.6, attributeValue "N

 ETA")), RelativeDistinguishedName (AttributeValue

 Assertion (attributeType 1.3.18.0.0.2032, attribu

 teValue "SSCP1A")), RelativeDistinguishedName (At

 tributeValueAssertion (attributeType 1.3.18.0.0.2

 272, attributeValue "CDRM.CDRM1A"))))), Dependent

 s (item (distinguishedName (RelativeDistinguished

 Name (AttributeValueAssertion (attributeType 1.3.

 18.0.2.4.6, attributeValue "NETA")), RelativeDist

 inguishedName (AttributeValueAssertion (attribute

 Type 1.3.18.0.0.2032, attributeValue "SSCP1A"))))

))))), Attribute (attributeId 1.3.18.0.0.5246, at

 tributeValue "NETA.SSCP1A"))), vertex2 (object (d

 istinguishedName (RelativeDistinguishedName (Attr

 ibuteValueAssertion (attributeType 1.3.18.0.2.4.6

 , attributeValue "NETA")), RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.0.2032, attributeValue "SSCP1A")))), class 1.

 3.18.0.0.1845)), (vertex1 (object (distinguishedN

 ame (RelativeDistinguishedName (AttributeValueAss

 ertion (attributeType 1.3.18.0.2.4.6, attributeVa

 lue "NETA")), RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 1.3.18.0.0.2032, a

 ttributeValue "SSCP1A")), RelativeDistinguishedNa

 me (AttributeValueAssertion (attributeType 1.3.18

 .0.0.2032, attributeValue "NETA.SSCP2A")))), clas

178 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

s 1.3.18.0.0.2278, states 00000100400003, info (A

 ttribute (attributeId 1.3.18.0.0.2194, attributeV

 alue (dependents (and (Dependents (item (distingu

 ishedName (RelativeDistinguishedName (AttributeVa

 lueAssertion (attributeType 1.3.18.0.2.4.6, attri

 buteValue "NETA")), RelativeDistinguishedName (At

 tributeValueAssertion (attributeType 1.3.18.0.0.2

 032, attributeValue "SSCP1A")), RelativeDistingui

 shedName (AttributeValueAssertion (attributeType

 1.3.18.0.0.2272, attributeValue "CDRM.CDRM1A"))))

), Dependents (item (distinguishedName (RelativeD

 istinguishedName (AttributeValueAssertion (attrib

 uteType 1.3.18.0.2.4.6, attributeValue "NETA")),

 RelativeDistinguishedName (AttributeValueAssertio

 n (attributeType 1.3.18.0.0.2032, attributeValue

 "SSCP1A"))))))))), Attribute (attributeId 1.3.18.

 0.0.5246, attributeValue ""))), vertex2 (object (

 distinguishedName (RelativeDistinguishedName (Att

 ributeValueAssertion (attributeType 1.3.18.0.2.4.

 6, attributeValue "NETA")), RelativeDistinguished

 Name (AttributeValueAssertion (attributeType 1.3.

 18.0.0.2032, attributeValue "SSCP1A")))), class 1

 .3.18.0.0.1845)))))))

The linked-reply in the example, identified by the operation value being 2, contains

a set of 4 instances of the (v1,v2,e1) sequence, although not all instances of the

sequence contain all fields of the sequence. The following is a summary of the

contents of the 4 sequences:

First sequence: (v1,v2,e1) APPN data

vertex 1 : NETA;SSCP1A

 Class : interchangeNode

 States :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 Info :

 resourceSequenceNumber : 2

 appnNodeCapabilities : 3348

vertex 2 : NETA;SSCP2A

 Class : appnNN

endpoint 1 : NETA;SSCP1A;21.NETA.SSCP2A

 Class : appnTransmissionGroup

 States :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 Info :

 resourceSequenceNumber : 2

 appnTGcapabilities : 00

 cp-cpSessionSupport : TRUE

Chapter 15. VTAM topology monitoring 179

This sequence represents the connection from the local node to partner node. This

sequence shows:

v In vertex 1: name, class and attributes of the local node (origin of TG). SSCP1A

is not a central directory server, so extendedAppnNodeCapabilities is not

reported.

v In vertex 2: name and class of the partner node (destination of TG).

v In endpoint 1: name, class and attributes of the APPN transmission group (TG

number : 21)

Second sequence: (v1,v2,e1) APPN data

vertex 1 : NETA;SSCP2A

 Class : interchangeNode

 States :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 Info :

 resourceSequenceNumber : 2

 appnNodeCapabilities : 3348

vertex 2 : NETA;SSCP1A

 Class : appnNN

endpoint 1 : NETA;SSCP2A;21.NETA.SSCP1A

 Class : appnTransmissionGroup

 States :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 Info :

 resourceSequenceNumber : 2

 appnTGcapabilities : 00

 cp-cpSessionSupport : TRUE

This sequence represents the connection from the partner node to local node. This

sequence shows:

v In vertex 1: name, class and attributes of the partner node (origin of TG).

SSCP2A is not a central directory server so extendedAppnNodeCapabilities is

not reported.

v In vertex 2: name and class of the local node (destination of TG).

v In endpoint 1: name, class and attributes of the APPN transmission group (TG

number : 21). Note that APPN transmission groups are unidirectional and this is

a different TG than reported in the first sequence.

Third sequence: (v1,v2) subarea data

vertex1 : NETA;SSCP1A;NETA.SSCP1A

 Class : CrossDomainResourceManager

 States :

180 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : ACTIVE

 Info :

 realSSCPname : NETA.SSCP1A

 dependencies : NETA;SSCP1A;CDRM.CDRM1A

 NETA;SSCP1A

vertex2 : NETA;SSCP1A

 Class : t5Node

This sequence shows the name and state of local agent host CDRM. This sequence

shows:

v The long form of vertex1. The first object in Dependencies is a definitionGroup

representing the major node where the CDRM is defined.

v The only form of vertex2, representing the local VTAM agent host. Note the

class is reported as t5Node for the subarea topology even though the actual host

type is interchange node (as shown in the first sequence).

Fourth sequence: (v1,v2) subarea data

vertex1 : NETA;SSCP1A;NETA.SSCP2A

 Class : CrossDomainResourceManager

 States :

 Operational State : Disabled

 Usage State : Idle

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : Not Initialized

 Unknown Status : False

 Native Status : NEVAC

 Info :

 realSSCPname : NETA.SSCP1A

 dependencies : NETA;SSCP1A;CDRM.CDRM1A

 NETA;SSCP1A

vertex2 : NETA;SSCP1A

 Class : t5Node

This sequence shows the name and state of CDRM for SSCP2A (a cross domain

host). This sequence shows:

v The long form of vertex1. SSCP2A is not an active CDRM (no CDRM-CDRM

session) so no virtual route is reported.

v The only form of vertex2, representing the local VTAM agent host.

The following example shows the APPN network topology update data for the

ongoing snaNetwork snapshot. The update was caused by inactivating the line and

PU connecting the two hosts. In this example only APPN topology changes are

reported because this is an APPN connection.

 msg CMIP-1.ROIVapdu (invokeID

 131076, linked-ID 196610, operation-value 2, arg

 ument (actionResult (managedObjectClass 1.3.18.0.

 0.2151, managedObjectInstance (distinguishedName

 (RelativeDistinguishedName (AttributeValueAsserti

Chapter 15. VTAM topology monitoring 181

on (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "SSCP1A")), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0

 .2216, attributeValue (string "SnaNetwork"))))),

 actionReply (actionType 1.3.18.0.0.2222, actionRe

 plyInfo ((vertex1 (object (distinguishedName (Rel

 ativeDistinguishedName (AttributeValueAssertion (

 attributeType 1.3.18.0.2.4.6, attributeValue "NET

 A")), RelativeDistinguishedName (AttributeValueAs

 sertion (attributeType 1.3.18.0.0.2032, attribute

 Value "SSCP1A")))), class 1.3.18.0.0.1822), verte

 x2 (object (distinguishedName (RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType 1

 .3.18.0.2.4.6, attributeValue "NETA")), RelativeD

 istinguishedName (AttributeValueAssertion (attrib

 uteType 1.3.18.0.0.2032, attributeValue "SSCP2A")

))), class 1.3.18.0.0.1822), endpoint1 (object (d

 istinguishedName (RelativeDistinguishedName (Attr

 ibuteValueAssertion (attributeType 1.3.18.0.2.4.6

 , attributeValue "NETA")), RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.0.2032, attributeValue "SSCP1A")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2044, attributeValue "21.NETA.S

 SCP2A")))), class 1.3.18.0.0.1823, states 0101010

 00000FF, info (Attribute (attributeId 1.3.18.0.0.

 2019, attributeValue 4), Attribute (attributeId 1

 .3.18.0.0.1941, attributeValue 00), Attribute (at

 tributeId 1.3.18.0.0.1958, attributeValue TRUE)))

), (vertex1 (object (distinguishedName (RelativeD

 istinguishedName (AttributeValueAssertion (attrib

 uteType 1.3.18.0.2.4.6, attributeValue "NETA")),

 RelativeDistinguishedName (AttributeValueAssertio

 n (attributeType 1.3.18.0.0.2032, attributeValue

 "SSCP1A")))), class 1.3.18.0.0.1822), vertex2 (ob

 ject (distinguishedName (RelativeDistinguishedNam

 e (AttributeValueAssertion (attributeType 1.3.18.

 0.2.4.6, attributeValue "NETA")), RelativeDisting

 uishedName (AttributeValueAssertion (attributeTyp

 e 1.3.18.0.0.2032, attributeValue "SSCP2A")))), c

 lass 1.3.18.0.0.1822), endpoint1 (object (disting

 uishedName (RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.2.4.6, attr

 ibuteValue "NETA")), RelativeDistinguishedName (A

 ttributeValueAssertion (attributeType 1.3.18.0.0.

 2032, attributeValue "SSCP1A")), RelativeDistingu

 ishedName (AttributeValueAssertion (attributeType

 1.3.18.0.0.2044, attributeValue "21.NETA.SSCP2A"

)))), class 1.3.18.0.0.1823, states 000001000000F

 F, info (Attribute (attributeId 1.3.18.0.0.2019,

 attributeValue 6), Attribute (attributeId 1.3.18.

 0.0.1941, attributeValue 00), Attribute (attribut

 eId 1.3.18.0.0.1958, attributeValue TRUE)))))))))

First sequence: (v1,v2,e1) APPN data

vertex 1 : NETA;SSCP1A

 Class : appnNN

vertex 2 : NETA;SSCP2A

 Class : appnNN

endpoint 1 : NETA;SSCP1A;21.NETA.SSCP2A

182 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Class : appnTransmissionGroup

 States :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 Info :

 resourceSequenceNumber : 4

 appnTGcapabilities : 00

 cp-cpSessionSupport : TRUE

This sequence reports the state of connection between network nodes SSCP1A and

SSCP2A through APPN TG 21.

Second sequence: (v1,v2,e1) APPN data

vertex 1 : NETA;SSCP1A

 Class : appnNN

vertex 2 : NETA;SSCP2A

 Class : appnNN

endpoint 1 : NETA;SSCP1A;21.NETA.SSCP2A

 Class : appnTransmissionGroup

 States :

 Operational State : Disabled

 Usage State : Idle

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 Info :

 resourceSequenceNumber : 6

 appnTGcapabilities : 00

 cp-cpSessionSupport : TRUE

This sequence reports the state of connection between network nodes SSCP1A and

SSCP2A through APPN TG 21. Note that the TG operational state is now disabled.

Requesting and monitoring local topology (snaLocalTopo)

This section contains the following topics:

v “Overview”

v “Action request” on page 185

v “Initial data response” on page 186

v “Update data response” on page 187

v “Action termination” on page 188

v “snaLocalTopo snapshot data” on page 190

v “snaLocalTopo snapshot example” on page 195

Overview

This section describes the actions that are used to monitor the resources owned by

a VTAM topology agent host.

Chapter 15. VTAM topology monitoring 183

Management of VTAM resources requires that a manager application program be

able to obtain an initial list of the resources, their status, their connectivity, and

selected other pertinent data to be followed later by notification of changes to the

status or connectivity. The manager application program can monitor these VTAM

resources by sending the ACTION(snapshot) request to the snaLocalTopo object

instance at the local VTAM topology agent or at a remote VTAM topology agent.

The snaLocalTopo snapshot is used to obtain information about the following

resource data:

v VTAM topology agent host

A set of attribute data associated with the object class of the VTAM node is

reported. The VTAM topology agent host is always reported as a vertex 1 in the

snapshot response.

v Remote VTAM host

If a remote VTAM host is connected to the VTAM topology agent host, the

remote VTAM host is reported in the snaLocalTopo snapshot. The remote VTAM

host is reported as a vertex 2 in the snapshot response.

v Owned NCPs

For NCPs that are owned by the VTAM topology agent host, a set of attribute

data associated with the NCP itself is reported. An owned NCP is reported as a

t4Node object in vertex 2 (associated with a VTAM host vertex 1) and also is

reported as a vertex 1 in the snapshot response.

v Contacted NCPs

A contacted NCP is reported as a t4Node object in vertex 2 (associated with a

local NCP vertex 1).

v Virtual routing nodes

A virtual node is reported as a virtualRoutingNode object in vertex 2.

v Other contacted nodes

Other nodes that are contacted are reported as t2-1Node, lenNode, appnEN, and

appnNN objects in vertex 2. Type 1 and type 2.0 nodes are not reported in vertex

2.

v Lines

The lines and channels attached to the VTAM topology agent host are reported;

also, for any NCP reported as a vertex 1, the predefined and dynamically

defined lines are reported. All lines and channels are reported as port objects in

vertex 1.

v Physical units and link stations

The dynamic, leased, and switched PUs and link stations associated with the

VTAM topology agent host or with owned NCPs (reported as vertex 1) are

reported as logicalLink objects in endpoint 1. Remote link stations, for nodes

reported in vertex 2, are not reported as objects; instead, they are reported in the

partnerConnection attribute of the logicalLink object in endpoint 1.

v Connections to adjacent nodes

The connections from the VTAM host to adjacent nodes are reported; also, the

connections from owned NCPs are reported. The connections are reported as

appnTransmissionGroup and subareaTransmissionGroup objects in endpoint 1.

The VTAM topology agent host is reported as an instance of one of the following

object classes:

v Type 5 node (t5Node)

v APPN network node (appnNN)

184 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

v Interchange node (interchangeNode)

v APPN end node (appnEN)

v Migration data host (migrationDataHost)

When a connection to an adjacent, contacted node is reported, the adjacent node is

reported as an instance of one of the following object classes:

v Type 5 node (t5Node)

v APPN network node (appnNN)

v Interchange node (interchangeNode)

v APPN end node (appnEN)

v Type 4 node (t4Node)

v LEN node (lenNode)

v Type 2.1 node (t2-1Node)

v Virtual routing node (virtualRoutingNode)

A connection to an adjacent node is reported by the following resources:

v APPN transmission groups (appnTransmissionGroup)

v Subarea transmission groups (subareaTransmissionGroup)

v Lines and channels (port)

v Physical units (logicalLink)

v Link stations (logicalLink)

Other predefined resources (that are not currently being used for connections) are

also reported as part of the snaLocalTopo snapshot.

The data reported for a snaLocalTopo snapshot can be partially controlled with the

VTAMTOPO filtering option. Appendix G, “VTAMTOPO filtering option

reporting,” on page 347 shows a summary of the results of using the VTAMTOPO

filtering option for connected switched PUs. See the z/OS Communications Server:

SNA Resource Definition Reference and the z/OS Communications Server: SNA

Operation for more information about the VTAMTOPO filtering option.

Action request

A snapshot action request is used to request local topology data from a VTAM

topology agent host. The action request is sent as an m-Action-Confirmed

operation.

The manager application program can request that any future updates to the

snaLocalTopo object be returned, as they occur. The local topology data is requested

without updates by specifying the oneTimeOnly value in the actionInfoArg portion

of the request. The local topology data and future updates can be requested by

specifying the ongoing value in the actionInfoArg portion of the request.

The target object of the request is the only object instance in the snaLocalTopo object

class. Therefore, a single object instance name must be specified as the

baseManagedObjectInstance in the request.

Optionally, the manager application program can specify the appnPlusSubareaParm

parameter that indicates whether the requested data is appnOnly or

appnPlusSubarea. An appnOnly request does not result in only APPN objects being

reported. However, it does result in no NCP objects being reported. Instead, an

NCP is considered part of a composite node with the VTAM topology agent host.

The appnPlusSubarea request results in NCPs being reported as type 4 nodes. If the

appnPlusSubareaParm is not specified in the request, the default value is appnOnly.

Chapter 15. VTAM topology monitoring 185

The following example shows a start request for snaLocalTopo data:

 msg CMIP-1.ROIVapdu (invokeID 196612,

 operation-value 7, argument (baseManagedObjectCl

 ass 1.3.18.0.0.2152, baseManagedObjectInstance (

 distinguishedName (RelativeDistinguishedName (At

 tributeValueAssertion (attributeType 1.3.18.0.2.

 4.6, attributeValue "NETA")), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType

 1.3.18.0.0.2032, attributeValue "SSCP1A")), Rela

 tiveDistinguishedName (AttributeValueAssertion (

 attributeType 1.3.18.0.0.2216, attributeValue (s

 tring "SnaLocalTopology"))))), actionInfo (actio

 nType 1.3.18.0.0.2222, actionInfoArg (start ongo

 ing, addlInfo (ManagementExtension (identifier 1

 .3.18.0.0.2164, significance TRUE, information 1

))))))

Note from the example that the snaLocalTopo object name is composed of the

network identifier and node name of the VTAM topology agent host, followed by

the graphId (1.3.18.0.0.2216) naming attribute, which is required to have a value of

(string "SnaLocalTopology"). The actionType is a snapshot, and the actionInfoArg

indicates that this request is to start an ongoing snapshot. Also in this example the

appnPlusSubareaParm (1.3.18.0.0.2164) is specified with information value of 1,

which means appnPlusSubarea. An information value of 0 means appnOnly. The

significance value of TRUE means that if the VTAM topology agent finds an error

associated with the specification of this appnPlusSubareaParm parameter, then the

manager application program needs to receive an error response (ROER). A FALSE

value tells the VTAM topology agent to ignore the parameter if an error is found.

This is a typical example of a snaLocalTopo snapshot request that can be used simply

by supplying the appropriate network ID and SSCP or CP name of the VTAM

topology agent host.

Initial data response

Both ongoing and oneTimeOnly snapshots receive a set of initial data as part of the

snapshot response. The initial data is the report of the appropriate resource data

and connectivity as it exists at the time the request is processed. The contents of

the initial data depend most on the current configuration of the local resources and

somewhat on the network configuration. The contents of the initial data also

depends on the value of the appnPlusSubareaParm specified in the snapshot request.

If the appnPlusSubareaParm value is 0 (appnOnly), the NCPs are not reported

separately from the VTAM host; they are considered part of the VTAM composite

node.

The initial data is sent by a set of linked-reply messages; each linked-reply

message contains one or more sets of the sequence (vertex 1, vertex 2, endpoint 1),

abbreviated as (v1,v2,e1). Vertex 1 represents either the VTAM topology agent host

node or an owned NCP node. Vertex 1 optionally contains port information. Vertex

2 represents a contacted node adjacent to the node specified in the associated

vertex 1; vertex 2 is optional. If both vertex 1 and vertex 2 are present, endpoint 1

represents the transmission group used for the connection and the logicalLink on

the vertex 1 side of the connection. If only vertex 1 is present (no vertex 2),

endpoint 1 represents a logicalLink at the vertex 1 node that is not currently being

used for a connection. Endpoint 1 is optional.

The first time a node is reported as vertex 1 in a snaLocalTopo snapshot, the full set

of attribute data associated with that node is reported; this is referred to as the

186 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

long form of vertex 1. For subsequent reports of that same node in vertex 1, the

attribute data is omitted; this is called the short form of vertex 1.

Each sequence of (v1,v2,e1) can report at most one port, one logicalLink, one

transmission group, and two nodes. All resources reported in a single sequence of

(v1,v2,e1) are related.

To report other VTAM resources, such as other lines or PUs, VTAM must be

repeated as a vertex 1 for each sequence of (v1,v2,e1) until the list of resources is

exhausted. When all initial data has been sent, the VTAM topology agent sends

one additional linked-reply message; the value in the actionReplyInfo field of this

message is ’()’, an empty set.

If the snaLocalTopo snapshot request is the oneTimeOnly type, the empty set

linked-reply is followed by the final snapshot RORS response message. If the

snapshot is the ongoing type, no additional messages are sent by the VTAM

topology agent until a reportable change occurs to a resource within the scope of

the snaLocalTopo snapshot request.

Update data response

For ongoing snapshots after the initial data has been sent, all subsequent reportable

resource changes are reported in linked-reply messages. The same message syntax

is used for the update data as is used for initial data. In fact, a single linked-reply

message does not indicate whether the data is initial data or update data; it

depends solely on whether the message arrived before the empty set linked-reply

or after it.

Update data is generated by the VTAM topology agent for these reasons:

v An object is created.

Objects are reported when VTAM learns about them. For example, when a major

node is activated, VTAM learns about the resources defined in the major node.

When a connection is established, VTAM learns about the contacted node and

reports the node. The long form of the object is always reported for an object

creation, with the reason field omitted, implying the default value of

addOrUpdate.

v An object is deleted.

Objects are reported as deleted when the object definition is deleted from

VTAM, as happens when a major node is inactivated. Objects are also reported

as deleted when they logically cease to exist, as is the case with an APPN

transmission group whose connection has been broken. The short form of an

object is reported for an object deletion, with reason value of deleted.

v An object changes state.

An object is reported when the internal VTAM state of the object changes, such

as from pending-active to active. The internal VTAM state is mapped to the

extended OSI state attributes, which are reported. Because several VTAM

internal states are mapped to the same set of OSI state attribute values, it is

possible for the internal VTAM status to change but the derived OSI states not

to change. These unchanged OSI states might still be reported by VTAM. Note

that it is likely that most of the resource state changes will not each result in a

sequence of (v1,v2,e1) being sent since the merge process holds and merges

updates where the resources are in non-resting states. For more information

about the merge process, refer to “ACTION(snapshot) update merging” on page

168.

Chapter 15. VTAM topology monitoring 187

The short form of the object is generally reported for state changes; however,

important attributes may also be reported with the state changes. The reason

field is omitted, implying the default value of addOrUpdate.

v An attribute value changes.

An attribute value change refers to changes in resource data other than the state

of the resource. In general, the VTAM topology agent does not support the

reporting of attribute value changes; however, there are instances of attribute

value changes that are considered to be too important to ignore. These few

selected changes are reported. The short form of an object is reported for an

attribute value change; however, there will always be a small set of attributes

also reported. The reason field is omitted, implying the default value of

addOrUpdate.

Table 13 shows the snaLocalTopo update data and the reasons for the updates.

Note: MODIFY VTAMTOPO can generate a snaLocalTopo Update.

 Table 13. Resources with reason for snaLocalTopo update data

Resource Reason Notes®

Local VTAM None Local VTAM is never the cause of update

data

NCP Vertex 1 created NCP major node activated

Vertex 1 deleted NCP major node deactivated

Vertex 1 state change NCP changed state

Vertex 1 attribute value

change

Learned gateway information; report

attributes gatewayNode or

interconnectedNetIds or both

Line Created Major node containing line activated

Deleted Major node containing line deactivated

State change Line changed state

Attribute value change Report learned data in attributes:

adapterAddresses or relatedAdapter.

PU or link

station

Created Major node containing PU activated

Deleted Major node containing PU deactivated

State change PU changed state

Attribute value change If associated LINE information changes,

report attributes portId or

adjacentLinkStationAddress or both

Contacted

node

Created New connection established to node

Deleted Loss of connection to node

Transmission

group

Created New connection established

Deleted Loss of a connection

The VTAM topology agent continues to send update data until a valid request is

received to stop the snapshot.

Action termination

The VTAM topology agent terminates an ongoing snaLocalTopo snapshot action

under the following conditions:

188 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

v A stop snapshot action request is received.

v An error occurs during snapshot processing in VTAM.

v The association between the local CMIP services and the manager application

program’s CMIP services terminates.

The following is an example of a valid stop request:

 msg CMIP-1.ROIVapdu (invokeID 196613,

 operation-value 7, argument (baseManagedObjectCla

 ss 1.3.18.0.0.2152, baseManagedObjectInstance (di

 stinguishedName (RelativeDistinguishedName (Attri

 buteValueAssertion (attributeType 1.3.18.0.2.4.6,

 attributeValue "NETA")), RelativeDistinguishedNa

 me (AttributeValueAssertion (attributeType 1.3.18

 .0.0.2032, attributeValue "SSCP1A")), RelativeDis

 tinguishedName (AttributeValueAssertion (attribut

 eType 1.3.18.0.0.2216, attributeValue (string "Sn

 aLocalTopology"))))), actionInfo (actionType 1.3.

 18.0.0.2222, actionInfoArg (stop 196612))))

The stop request in the previous example looks very similar to the associated start

request except for the actionInfoArg portion of the request. For the stop request,

the stop keyword is used along with the invoke identifier of the start request that

is to be terminated.

The result of the VTAM topology agent’s processing of a stop request is three

messages:

v An empty set linked-reply for the start request

v An RORS response to the start request

v An RORS response to the stop request

The following shows examples of these three messages:

First, the empty set linked-reply: (Note that the associated invoke identifier in a

linked-reply is given in the linked-ID field.)

 msg CMIP-1.ROIVapdu (invokeID

 1, linked-ID 196612, operation-value 2, argument

 (actionResult (managedObjectClass 1.3.18.0.0.215

 2, managedObjectInstance (distinguishedName (Rela

 tiveDistinguishedName (AttributeValueAssertion (a

 ttributeType 1.3.18.0.2.4.6, attributeValue "NETA

 ")), RelativeDistinguishedName (AttributeValueAss

 ertion (attributeType 1.3.18.0.0.2032, attributeV

 alue "SSCP1A")), RelativeDistinguishedName (Attri

 buteValueAssertion (attributeType 1.3.18.0.0.2216

 , attributeValue (string "SnaLocalTopology"))))),

 actionReply (actionType 1.3.18.0.0.2222, actionR

 eplyInfo ()))))

Next, the RORS for the start request:

 msg CMIP-1.RORSapdu (invokeID

 196612)

Finally, the RORS for the stop request:

 msg CMIP-1.RORSapdu (invokeID

 196613, resultOption (operation-value 7, result

 (managedObjectClass 1.3.18.0.0.2152, managedObjec

 tInstance (distinguishedName (RelativeDistinguish

 edName (AttributeValueAssertion (attributeType 1.

 3.18.0.2.4.6, attributeValue "NETA")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

Chapter 15. VTAM topology monitoring 189

teType 1.3.18.0.0.2032, attributeValue "SSCP1A"))

 , RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.0.2216, attributeValu

 e (string "SnaLocalTopology"))))), actionReply (a

 ctionType 1.3.18.0.0.2222, actionReplyInfo ()))))

snaLocalTopo snapshot data

For local topology data, the structure of the long form of vertex 1 is defined as

follows:

vertex1

Identifies the beginning of vertex 1. The lower level fields in vertex 1 are:

object Object instance name of the node represented by vertex 1. VTAM

always returns the distinguishedName form of an object instance

name.

class Object identifier (OI) representing the object class of the reported

node.

states String of characters representing the OSI state of the vertex 1 node.

For a list of OSI states, refer to “OSI object states” on page 155.

info Set of attributes providing data about the vertex 1 node. Not all

attributes appear in all instances of vertex 1. The list of all possible

attributes is:

dependencies

Included only if vertex 1 represents an NCP.

opEquipmentList

Included only if vertex 1 represents the local VTAM host.

softwareList

Included only if vertex 1 represents the local VTAM host.

sysplexInfo

Included only if vertex 1 represents the local VTAM host.

appnNodeCapabilities

Included only if vertex 1 represents the local VTAM host

and the VTAM node is an appnNN or an interchangeNode.

extendedAppnNodeCapabilities

Included only if vertex 1 represents the local VTAM host

and the VTAM node is an appnNN or an interchangeNode.

subareaLimit

Included only if vertex 1 represents a subarea node, which

is a t5Node, t4Node, interchangeNode, or migrationDataHost.

subareaAddress

Included only if vertex 1 represents a subarea node, which

is a t5Node, t4Node, interchangeNode, or migrationDataHost.

puName

Included only if vertex 1 represents the local VTAM host,

and VTAM is subarea-capable.

gatewayNode

Included only if vertex 1 represents an NCP, and the NCP

is gateway-capable.

190 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

gatewaySSCP

Included only if vertex 1 represents the local VTAM host,

and VTAM is gateway-capable.

interconnectedNetIds

Included only if vertex 1 represents an NCP, and the NCP

is gateway-capable.

moreInfo

Included only if a port object is to be reported in vertex 1 and is

followed by a ManagementExtension that contains the port object.

identifier

Object identifier for the objectStuffInMoreInfoParm, which

identifies the syntax for this ManagementExtension.

information

Port data in the ManagementExtension, which contains the

following fields:

object Object instance name of the port to be reported.

VTAM always reports the distinguishedName form

of object instance name.

class Object identifier (OI) representing the port object

class.

states String of characters representing the OSI state of

the port. For a list of OSI states, refer to “OSI object

states” on page 155.

info Set of attributes providing data about the port. Not

all attributes appear in all instances of port objects.

The list of all possible attributes is:

dependencies

Always included.

adapterNumbers

Included only if the snapshot type is

appnOnly.

connectionId

Included only if the snapshot type is

appnPlusSubarea.

adapterAddresses

Always included.

lineType

Always included.

dlcName

Always included.

relatedAdapter

Always included.

The structure of the short form of vertex 1 is defined as follows:

vertex1

Identifies the beginning of vertex 1. The lower level fields in vertex 1 are:

Chapter 15. VTAM topology monitoring 191

object Object instance name of the node represented by vertex 1. VTAM

always returns the distinguishedName form of object instance

name.

class Object identifier (OI) representing the object class of the reported

node.

states String of characters representing the OSI state of the vertex 1 node

only if a state change occurred for the vertex 1 node. For a list of

OSI states, refer to “OSI object states” on page 155.

info Set of attributes providing data about the vertex 1 node. Not all

attributes appear in all instances of vertex 1. The list of all possible

attributes is:

gatewayNode

Included only if vertex 1 represents an NCP and VTAM

has discovered that the NCP is gateway-capable.

interconnectedNetIds

Included only if vertex 1 represents an NCP and VTAM

has discovered that the NCP is gateway-capable.

moreInfo

Included only if a port object is to be reported in vertex 1 and is

followed by a ManagementExtension that contains the port object.

The form included here is the short form of the port.

identifier

Object identifier for the objectStuffInMoreInfoParm, which

identifies the syntax for this ManagementExtension.

information

Port data in the ManagementExtension, which contains the

following fields:

object Object instance name of the port to be reported.

VTAM always reports the distinguishedName form

of object instance name.

class Object identifier (OI) representing the port object

class.

states String of characters representing the OSI state of

the port. For a list of OSI states, refer to “OSI object

states” on page 155.

info Set of attributes providing data about the port. Not

all attributes appear in all instances of port objects.

The list of all possible attributes is:

adapterAddresses

Included only to report an attribute value

change.

relatedAdapter

Included only to report an attribute value

change.

reason Included only if the port is reported as deleted.

reason Included only if the vertex 1 node is being reported as deleted.

192 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Note that although the previous lists show the long form of the port in the long

form of vertex 1 and the short form of the port in the short form of vertex 1, it is

possible to have the long form of port contained in the short form of vertex 1. For

example, if a node was already reported in a previous vertex 1 (long form) and

was reported again (short form), but this time the vertex 1 included a port that has

not yet been reported, the port is the long form. The VTAM topology agent never

reports the short form of a port in a long form of vertex 1.

Vertex 2 for snaLocalTopo does not have a long form and a short form; there is only

one form. The structure of vertex 2 is as follows:

vertex2

Identify the beginning of vertex 2. The lower level fields in vertex 2 are:

object Object instance name of the node represented by vertex 2. VTAM

always returns the distinguishedName form of object instance

name.

class Object identifier (OI) representing the object class of the reported

node.

 VTAM might not report the true object class of composite nodes

such as interchange nodes. When reporting subarea connections,

vertex2 object class is always t5Node or t4Node.

reason Included only if the vertex 2 node is being reported as deleted.

The structure of endpoint 1 for snaLocalTopo is variable, depending on what objects

are reported. Endpoint 1 can contain both a transmission group object and a

logicalLink object, or it can contain just a logicalLink object. Endpoint 1 never

contains only a transmission group object. If both a TG and a logicalLink are

reported, the TG is reported as the first and primary object in endpoint 1. If only a

logicalLink is reported, the logicalLink is reported as the primary object in endpoint

1.

The structure of endpoint 1 is shown in two parts; first, the structure of the TG

object is shown, including where the logicalLink object fits into the structure. Then

the logicalLink object is shown with a structure used for either the primary or

secondary object in endpoint 1.

The TG object structure follows:

object Object instance name of the TG to be reported. VTAM always reports the

distinguishedName form of object instance name.

class Object identifier (OI) representing either the appnTransmissionGroup or the

subareaTransmissionGroup object class.

states String of characters representing the OSI state of the TG; this field is

included only for appnTransmissionGroup objects. For a list of OSI states,

refer to “OSI object states” on page 155.

info Set of attributes providing data about the TG. Not all attributes appear in

all instances of TG objects. The info label and value are included only for

appnTransmissionGroup objects. The list of all possible attributes is:

cp-cpSessionSupport

Included only for appnTransmissionGroup objects.

appnTGCapabilities

Included only for appnTransmissionGroup objects.

Chapter 15. VTAM topology monitoring 193

moreInfo

Always included for a TG object and is followed by a

ManagementExtension that contains the logicalLink object.

identifier

Object identifier for the objectStuffInMoreInfoParm, which is a

parameter that identifies the syntax for this ManagementExtension.

information

logicalLink data in the ManagementExtension. At this point the

logicalLink data described below is inserted.

reason Included only if the TG is being reported as deleted.

The logical link object structure follows:

object Object instance name of the logicalLink to be reported. VTAM always

reports the distinguishedName form of object instance name.

class Object identifier (OI) representing the logicalLink object class.

states String of characters representing the OSI state of the logicalLink. For a list of

OSI states, refer to “OSI object states” on page 155.

info Set of attributes providing data about the logicalLink. Not all attributes

appear in all instances of logicalLink objects. The list of all possible

attributes is:

dependencies

Included for initial data, object creation updates, state change

updates for switched PUs, and attribute value change updates

caused by line filtering through the MODIFY VTAMTOPO

command.

connectionId

Included only for native ATM connections and only if the snapshot

type is appnPlusSubarea, for initial data and object creation

updates.

portId Reported for initial data, object creation updates, state change

updates for switched PUs, and selected attribute value change

updates; however, this attribute might be suppressed if it refers to

a switched logical line and switched logical lines are being

suppressed (because of how the VTAMTOPO filtering option is

specified).

partnerConnection

Included only if the resource represented by this logicalLink is a

link station and if the partner logicalLink information is available.

Included for initial data, object creation updates, and state change

updates.

adjacentLinkStationAddress

Included if the associated line is a logical token ring line, a frame

relay line, an XCA line, an XCF line, an ATM line, or an SDLC line

with a polling address. The attribute might also be included for

PUs that have the ADDR keyword coded on the PU definition

statement. The attribute is included for initial data, object creation

updates, state change updates, and selected attribute value change

updates.

194 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

adjacentNodeType

Included for initial data, object creation updates, and state change

updates.

dlurLocalLsAddress

Included when a DLUR supports downstream PUs. LogicalLink

reports local addressing information.

dlurName

Included only if the PU is attached to VTAM through the

dependent LU server and dependent LU requester capabilities.

Included for initial data, object creation updates, and state change

updates.

reason Included only if the logicalLink is being reported as deleted.

snaLocalTopo snapshot example

The following example of snaLocalTopo snapshot response data shows only the first

linked-reply message of the initial data; the sample configuration is the VTAM

topology agent host (SSCP1A) connected to an active NCP (NCP3AB8). After the

example string, the contents of the message are described in further detail.

 msg CMIP-1.ROIVapdu (invokeID

 131074, linked-ID 196612, operation-value 2, arg

 ument (actionResult (managedObjectClass 1.3.18.0.

 0.2152, managedObjectInstance (distinguishedName

 (RelativeDistinguishedName (AttributeValueAsserti

 on (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "SSCP1A")), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0

 .2216, attributeValue (string "SnaLocalTopology")

)))), actionReply (actionType 1.3.18.0.0.2222, ac

 tionReplyInfo ((vertex1 (object (distinguishedNam

 e (RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.2.4.6, attributeValu

 e "NETA")), RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.0.2032, att

 ributeValue "SSCP1A")))), class 1.3.18.0.0.1826,

 states 01010100000000, info (Attribute (attribute

 Id 1.3.14.2.2.4.33, attributeValue (ObjectInstanc

 e (distinguishedName (RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.2

 .4.8, attributeValue "ORGREG")), RelativeDistingu

 ishedName (AttributeValueAssertion (attributeType

 2.5.4.10, attributeValue "IBM")), RelativeDistin

 guishedName (AttributeValueAssertion (attributeTy

 pe 1.3.14.2.2.4.45, attributeValue "9021")), Rela

 tiveDistinguishedName (AttributeValueAssertion (a

 ttributeType 1.3.14.2.2.4.50, attributeValue "032

 082")))))), Attribute (attributeId 1.3.14.2.2.4.5

 3, attributeValue (ObjectInstance (distinguishedN

 ame (RelativeDistinguishedName (AttributeValueAss

 ertion (attributeType 1.3.18.0.2.4.8, attributeVa

 lue "ORGREG")), RelativeDistinguishedName (Attrib

 uteValueAssertion (attributeType 2.5.4.10, attrib

 uteValue "IBM")), RelativeDistinguishedName (Attr

 ibuteValueAssertion (attributeType 0.0.13.3100.0.

 7.38, attributeValue (pString "ACF/VTAM.4.3.0")))

)))), Attribute (attributeId 1.3.18.0.0.2296, att

 ributeValue "SYSPLEX"), Attribute (attributeId 1.

 3.18.0.0.1940, attributeValue 3340), Attribute (a

 ttributeId 1.3.18.0.0.1970, attributeValue 0000),

 Attribute (attributeId 1.3.18.0.0.2036, attribut

Chapter 15. VTAM topology monitoring 195

eValue 511), Attribute (attributeId 1.3.18.0.0.20

 35, attributeValue 1), Attribute (attributeId 1.3

 .18.0.0.2013, attributeValue "ISTPUS"), Attribute

 (attributeId 1.3.18.0.0.1972, attributeValue TRU

 E)), moreInfo (ManagementExtension (identifier 1.

 3.18.0.0.2162, information (object (distinguished

 Name (RelativeDistinguishedName (AttributeValueAs

 sertion (attributeType 1.3.18.0.2.4.6, attributeV

 alue "NETA")), RelativeDistinguishedName (Attribu

 teValueAssertion (attributeType 1.3.18.0.0.2032,

 attributeValue "SSCP1A")), RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.0.2142, attributeValue "0321-L")))), class 1.

 3.18.0.0.2089, states 01010100000000, info (Attri

 bute (attributeId 1.3.18.0.0.2194, attributeValue

 (dependents (and (Dependents (item (distinguishe

 dName (RelativeDistinguishedName (AttributeValueA

 ssertion (attributeType 1.3.18.0.2.4.6, attribute

 Value "NETA")), RelativeDistinguishedName (Attrib

 uteValueAssertion (attributeType 1.3.18.0.0.2032,

 attributeValue "SSCP1A")), RelativeDistinguished

 Name (AttributeValueAssertion (attributeType 1.3.

 18.0.0.2272, attributeValue "NCP.ISTPUS"))))), De

 pendents (item (distinguishedName (RelativeDistin

 guishedName (AttributeValueAssertion (attributeTy

 pe 1.3.18.0.2.4.6, attributeValue "NETA")), Relat

 iveDistinguishedName (AttributeValueAssertion (at

 tributeType 1.3.18.0.0.2032, attributeValue "SSCP

 1A"))))))))), Attribute (attributeId 2.9.3.5.7.1,

 attributeValue "0321"), Attribute (attributeId 1

 .3.18.0.0.2117, attributeValue ()), Attribute (at

 tributeId 1.3.18.0.0.2131, attributeValue nonswit

 ched), Attribute (attributeId 1.3.18.0.0.2127, at

 tributeValue "CHANNEL"), Attribute (attributeId 1

 .3.18.0.0.2244, attributeValue (noInfo NULL))))))

), vertex2 (object (distinguishedName (RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.2.4.6, attributeValue "NETA")), R

 elativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.0.2032, attributeValue "

 NCP3AB8")))), class 1.3.18.0.0.1844), endpoint1 (

 object (distinguishedName (RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.2.4.6, attributeValue "NETA")), RelativeDisti

 nguishedName (AttributeValueAssertion (attributeT

 ype 1.3.18.0.0.2032, attributeValue "SSCP1A")), R

 elativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.0.2044, attributeValue "

 1.1.NETA.3.NCP3AB8")))), class 1.3.18.0.0.1840, m

 oreInfo (ManagementExtension (identifier 1.3.18.0

 .0.2162, information (object (distinguishedName (

 RelativeDistinguishedName (AttributeValueAssertio

 n (attributeType 1.3.18.0.2.4.6, attributeValue "

 NETA")), RelativeDistinguishedName (AttributeValu

 eAssertion (attributeType 1.3.18.0.0.2032, attrib

 uteValue "SSCP1A")), RelativeDistinguishedName (A

 ttributeValueAssertion (attributeType 1.3.18.0.0.

 2133, attributeValue "0321-S")))), class 1.3.18.0

 .0.2085, states 01010100000000, info (Attribute (

 attributeId 1.3.18.0.0.2194, attributeValue (depe

 ndents (and (Dependents (item (distinguishedName

 (RelativeDistinguishedName (AttributeValueAsserti

 on (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "SSCP1A")), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0

196 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

.2142, attributeValue "0321-L"))))))))), Attribut

 e (attributeId 1.3.18.0.0.2142, attributeValue "0

 321-L"), Attribute (attributeId 1.3.18.0.0.2236,

 attributeValue (object (distinguishedName (Relati

 veDistinguishedName (AttributeValueAssertion (att

 ributeType 1.3.18.0.2.4.6, attributeValue "NETA")

), RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.0.2032, attributeVal

 ue "NCP3AB8")), RelativeDistinguishedName (Attrib

 uteValueAssertion (attributeType 1.3.18.0.0.2133,

 attributeValue "PU321A")))))), Attribute (attrib

 uteId 1.3.18.0.0.2121, attributeValue t4))))))),

 (vertex1 (object (distinguishedName (RelativeDist

 inguishedName (AttributeValueAssertion (attribute

 Type 1.3.18.0.2.4.6, attributeValue "NETA")), Rel

 ativeDistinguishedName (AttributeValueAssertion (

 attributeType 1.3.18.0.0.2032, attributeValue "SS

 CP1A")), RelativeDistinguishedName (AttributeValu

 eAssertion (attributeType 1.3.18.0.0.2032, attrib

 uteValue "NCP3AB8")))), class 1.3.18.0.0.1844, st

 ates 01010100000000, info (Attribute (attributeId

 1.3.18.0.0.2194, attributeValue (dependents (and

 (Dependents (item (distinguishedName (RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.2.4.6, attributeValue "NETA")), R

 elativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.0.2032, attributeValue "

 SSCP1A")), RelativeDistinguishedName (AttributeVa

 lueAssertion (attributeType 1.3.18.0.0.2272, attr

 ibuteValue "NCP.NCP3AB8"))))), Dependents (item (

 distinguishedName (RelativeDistinguishedName (Att

 ributeValueAssertion (attributeType 1.3.18.0.2.4.

 6, attributeValue "NETA")), RelativeDistinguished

 Name (AttributeValueAssertion (attributeType 1.3.

 18.0.0.2032, attributeValue "SSCP1A"))))))))), At

 tribute (attributeId 1.3.18.0.0.2036, attributeVa

 lue 255), Attribute (attributeId 1.3.18.0.0.2035,

 attributeValue 3)), moreInfo (ManagementExtensio

 n (identifier 1.3.18.0.0.2162, information (objec

 t (distinguishedName (RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.2

 .4.6, attributeValue "NETA")), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType 1

 .3.18.0.0.2032, attributeValue "SSCP1A")), Relati

 veDistinguishedName (AttributeValueAssertion (att

 ributeType 1.3.18.0.0.2142, attributeValue "LN3A6

 ")))), class 1.3.18.0.0.2089, states 010101000000

 00, info (Attribute (attributeId 1.3.18.0.0.2194,

 attributeValue (dependents (and (Dependents (ite

 m (distinguishedName (RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.2

 .4.6, attributeValue "NETA")), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType 1

 .3.18.0.0.2032, attributeValue "SSCP1A")), Relati

 veDistinguishedName (AttributeValueAssertion (att

 ributeType 1.3.18.0.0.2272, attributeValue "NCP.N

 CP3AB8"))))), Dependents (item (distinguishedName

 (RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVa

 lueAssertion (attributeType 1.3.18.0.0.2032, attr

 ibuteValue "SSCP1A")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0.

 0.2032, attributeValue "NCP3AB8"))))))))), Attrib

 ute (attributeId 2.9.3.5.7.1, attributeValue "030

 3"), Attribute (attributeId 1.3.18.0.0.2117, attr

 ibuteValue ()), Attribute (attributeId 1.3.18.0.0

Chapter 15. VTAM topology monitoring 197

.2131, attributeValue nonswitched), Attribute (at

 tributeId 1.3.18.0.0.2127, attributeValue "SDLC")

 , Attribute (attributeId 1.3.18.0.0.2244, attribu

 teValue (noInfo NULL))))))), endpoint1 (object (d

 istinguishedName (RelativeDistinguishedName (Attr

 ibuteValueAssertion (attributeType 1.3.18.0.2.4.6

 , attributeValue "NETA")), RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.0.2032, attributeValue "SSCP1A")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2133, attributeValue "P3A3274E"

)))), class 1.3.18.0.0.2085, states 0101010000000

 0, info (Attribute (attributeId 1.3.18.0.0.2194,

 attributeValue (dependents (and (Dependents (item

 (distinguishedName (RelativeDistinguishedName (A

 ttributeValueAssertion (attributeType 1.3.18.0.2.

 4.6, attributeValue "NETA")), RelativeDistinguish

 edName (AttributeValueAssertion (attributeType 1.

 3.18.0.0.2032, attributeValue "SSCP1A")), Relativ

 eDistinguishedName (AttributeValueAssertion (attr

 ibuteType 1.3.18.0.0.2272, attributeValue "NCP.NC

 P3AB8"))))), Dependents (item (distinguishedName

 (RelativeDistinguishedName (AttributeValueAsserti

 on (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "SSCP1A")), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0

 .2142, attributeValue "LN3A6"))))))))), Attribute

 (attributeId 1.3.18.0.0.2142, attributeValue "LN

 3A6"), Attribute (attributeId 1.3.18.0.0.2236, at

 tributeValue (noInfo NULL)), Attribute (attribute

 Id 1.3.18.0.0.2119, attributeValue (lsAddr C2)),

 Attribute (attributeId 1.3.18.0.0.2121, attribute

 Value t20)))), (vertex1 (object (distinguishedNam

 e (RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.2.4.6, attributeValu

 e "NETA")), RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.0.2032, att

 ributeValue "SSCP1A")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0

 .0.2032, attributeValue "NCP3AB8")))), class 1.3.

 18.0.0.1844), vertex2 (object (distinguishedName

 (RelativeDistinguishedName (AttributeValueAsserti

 on (attributeType 1.3.18.0.2.4.6, attributeValue

 "NETA")), RelativeDistinguishedName (AttributeVal

 ueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "P3A4956G")))), class 1.3.18.0.0.1827),

 endpoint1 (object (distinguishedName (RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.2.4.6, attributeValue "NETA")), R

 elativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.0.2032, attributeValue "

 SSCP1A")), RelativeDistinguishedName (AttributeVa

 lueAssertion (attributeType 1.3.18.0.0.2044, attr

 ibuteValue "0.NETA.P3A4956G")))), class 1.3.18.0.

 0.1823, states 010101000000FF, info (Attribute (a

 ttributeId 1.3.18.0.0.1958, attributeValue FALSE)

 , Attribute (attributeId 1.3.18.0.0.1941, attribu

 teValue 00)), moreInfo (ManagementExtension (iden

 tifier 1.3.18.0.0.2162, information (object (dist

 inguishedName (RelativeDistinguishedName (Attribu

 teValueAssertion (attributeType 1.3.18.0.2.4.6, a

 ttributeValue "NETA")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0

 .0.2032, attributeValue "SSCP1A")), RelativeDisti

 nguishedName (AttributeValueAssertion (attributeT

198 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

ype 1.3.18.0.0.2133, attributeValue "P3A4956G")))

), class 1.3.18.0.0.2085, states 01010100000000,

 info (Attribute (attributeId 1.3.18.0.0.2194, att

 ributeValue (dependents (and (Dependents (item (d

 istinguishedName (RelativeDistinguishedName (Attr

 ibuteValueAssertion (attributeType 1.3.18.0.2.4.6

 , attributeValue "NETA")), RelativeDistinguishedN

 ame (AttributeValueAssertion (attributeType 1.3.1

 8.0.0.2032, attributeValue "SSCP1A")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2272, attributeValue "NCP.NCP3A

 B8"))))), Dependents (item (distinguishedName (Re

 lativeDistinguishedName (AttributeValueAssertion

 (attributeType 1.3.18.0.2.4.6, attributeValue "NE

 TA")), RelativeDistinguishedName (AttributeValueA

 ssertion (attributeType 1.3.18.0.0.2032, attribut

 eValue "SSCP1A")), RelativeDistinguishedName (Att

 ributeValueAssertion (attributeType 1.3.18.0.0.21

 42, attributeValue "LN3A6"))))))))), Attribute (a

 ttributeId 1.3.18.0.0.2142, attributeValue "LN3A6

 "), Attribute (attributeId 1.3.18.0.0.2236, attri

 buteValue (noInfo NULL)), Attribute (attributeId

 1.3.18.0.0.2119, attributeValue (lsAddr C4)), Att

 ribute (attributeId 1.3.18.0.0.2121, attributeVal

 ue len))))))), (vertex1 (object (distinguishedNam

 e (RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.2.4.6, attributeValu

 e "NETA")), RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.0.2032, att

 ributeValue "SSCP1A")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0

 .0.2032, attributeValue "NCP3AB8")))), class 1.3.

 18.0.0.1844, moreInfo (ManagementExtension (ident

 ifier 1.3.18.0.0.2162, information (object (disti

 nguishedName (RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 1.3.18.0.2.4.6, at

 tributeValue "NETA")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0.

 0.2032, attributeValue "SSCP1A")), RelativeDistin

 guishedName (AttributeValueAssertion (attributeTy

 pe 1.3.18.0.0.2142, attributeValue "LN3A1")))), c

 lass 1.3.18.0.0.2089, states 01010100000000, info

 (Attribute (attributeId 1.3.18.0.0.2194, attribu

 teValue (dependents (and (Dependents (item (disti

 nguishedName (RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 1.3.18.0.2.4.6, at

 tributeValue "NETA")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0.

 0.2032, attributeValue "SSCP1A")), RelativeDistin

 guishedName (AttributeValueAssertion (attributeTy

 pe 1.3.18.0.0.2272, attributeValue "NCP.NCP3AB8")

)))), Dependents (item (distinguishedName (Relati

 veDistinguishedName (AttributeValueAssertion (att

 ributeType 1.3.18.0.2.4.6, attributeValue "NETA")

), RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.0.2032, attributeVal

 ue "SSCP1A")), RelativeDistinguishedName (Attribu

 teValueAssertion (attributeType 1.3.18.0.0.2032,

 attributeValue "NCP3AB8"))))))))), Attribute (att

 ributeId 2.9.3.5.7.1, attributeValue "0305"), Att

 ribute (attributeId 1.3.18.0.0.2117, attributeVal

 ue ()), Attribute (attributeId 1.3.18.0.0.2131, a

 ttributeValue nonswitched), Attribute (attributeI

 d 1.3.18.0.0.2127, attributeValue "SDLC"), Attrib

 ute (attributeId 1.3.18.0.0.2244, attributeValue

 (noInfo NULL))))))), endpoint1 (object (distingui

 shedName (RelativeDistinguishedName (AttributeVal

Chapter 15. VTAM topology monitoring 199

ueAssertion (attributeType 1.3.18.0.2.4.6, attrib

 uteValue "NETA")), RelativeDistinguishedName (Att

 ributeValueAssertion (attributeType 1.3.18.0.0.20

 32, attributeValue "SSCP1A")), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType 1

 .3.18.0.0.2133, attributeValue "P3A3767A")))), cl

 ass 1.3.18.0.0.2085, states 01010100000000, info

 (Attribute (attributeId 1.3.18.0.0.2194, attribut

 eValue (dependents (and (Dependents (item (distin

 guishedName (RelativeDistinguishedName (Attribute

 ValueAssertion (attributeType 1.3.18.0.2.4.6, att

 ributeValue "NETA")), RelativeDistinguishedName (

 AttributeValueAssertion (attributeType 1.3.18.0.0

 .2032, attributeValue "SSCP1A")), RelativeDisting

 uishedName (AttributeValueAssertion (attributeTyp

 e 1.3.18.0.0.2272, attributeValue "NCP.NCP3AB8"))

))), Dependents (item (distinguishedName (Relativ

 eDistinguishedName (AttributeValueAssertion (attr

 ibuteType 1.3.18.0.2.4.6, attributeValue "NETA"))

 , RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.0.2032, attributeValu

 e "SSCP1A")), RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 1.3.18.0.0.2142, a

 ttributeValue "LN3A1"))))))))), Attribute (attrib

 uteId 1.3.18.0.0.2142, attributeValue "LN3A1"), A

 ttribute (attributeId 1.3.18.0.0.2236, attributeV

 alue (noInfo NULL)), Attribute (attributeId 1.3.1

 8.0.0.2119, attributeValue (lsAddr C2)), Attribut

 e (attributeId 1.3.18.0.0.2121, attributeValue t1

)))))))))

The linked-reply in the example, identified by the operation value of 2, contains a

set of four instances of the (v1,v2,e1) sequence. Not all instances of the sequence

contain all fields of the sequence. The following is a summary of the contents of

the four sequences:

First sequence: (v1,v2,e1)

 vertex 1 : NETA;SSCP1A (local VTAM host)

 class : interchangeNode

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 opEquipmentList : ORGREG.IBM.9021.032082

 softwareList : ORGREG.IBM.ACF/VTAM.4.3.0

 sysplexInfo : SYSPLEX

 appnNodeCapabilities : 3340

 extAppnNodeCap : 0000

 subareaLimit : 511

 subareaAddress : 1

 puName : ISTPUS

 gatewaySSCP : TRUE

 moreInfo :

 NETA;SSCP1A;0321-L

 class : port

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

200 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 connectionId : 0321

 adapterAddresses : ()

 lineType : nonswitched

 dlcName : channel

 relatedAdapter : NOINFO NULL

 dependencies : NETA;SSCP1A;NCP.ISTPUS,

 NETA;SSCP1A

 vertex 2 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

 class : t4Node

 endpoint 1: NETA;SSCP1A;1.1.NETA.3.NCP3AB8

 class : subareaTransmissionGroup

 NETA;SSCP1A;0321-S

 class : logicalLink

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 portId : 0321-L

 partnerConnection : NETA;NCP3AB8;PU321A

 adjacentNodeType : t4 (type 4)

 dependencies : NETA;SSCP1A;0321-L

This sequence represents the connection from the local VTAM host to a locally

owned NCP. This sequence shows:

v The long form of vertex 1 (the attributes for the local VTAM host)

v The long form of the port in vertex 1 (channel data)

v The only form of vertex 2 (showing the NCP)

v The form of endpoint 1 containing both a subareaTransmissionGroup and a

logicalLink

Second sequence: (v1,e1)

 vertex 1 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

 class : t4Node

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 subareaLimit : 255

 subareaAddress : 3

 dependencies : NETA;SSCP1A;NCP.NCP3AB8

 NETA;SSCP1A

 moreInfo :

 NETA;SSCP1A;LN3A6 (SDLC line in NCP major node)

 class : port

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

Chapter 15. VTAM topology monitoring 201

Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 connectionId : 0303

 adapterAddresses : ()

 lineType : nonswitched

 dlcName : SDLC

 relatedAdapter : NOINFO NULL

 dependencies : NETA;SSCP1A;NCP.NCP3AB8,

 NETA;SSCP1A;NCP3AB8

 endpoint 1: NETA;SSCP1A;P3A3274E (PU defined under LN3A6)

 class : logicalLink

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 portId : LN3A6

 partnerConnection : NOINFO NULL

 adjacentLinkStationAddress : LSADDR C2

 adjacentNodeType : t20 (type 2.0)

 dependencies : NETA;SSCP1A;NCP.NCP3AB8,

 NETA;SSCP1A;LN3A6

This sequence begins the reporting of the NCP resources; the first line defined in

the NCP major node is reported, along with the first of two PUs defined under

that line. This sequence shows:

v The long form of vertex 1 (the attributes for the NCP)

v The long form of the port in vertex 1 (SDLC line data)

v The line / PU are being used for a connection to a type 2.0 node; VTAM does

not report type 2.0 nodes in vertex 2

v The form of endpoint 1 containing only a logicalLink; there is no TG information

because the contacted node is type 2.0

Third sequence: (v1,v2,e1)

 vertex 1 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

 class : t4Node

 vertex 2 : NETA;P3A4956G

 class : lenNode

 endpoint 1: NETA;SSCP1A;0.NETA.P3A4956G

 class : appnTransmissionGroup

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : N/A

 info :

 cp-cpSessionSupport : FALSE

 appnTGcapabilities : 00

 NETA;SSCP1A;P3A4956G (PU defined under LN3A6)

 class : logicalLink

202 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 portId : LN3A6

 partnerConnection : NOINFO NULL

 adjacentLinkStationAddress : LSADDR C4

 adjacentNodeType : len

 dependencies : NETA;SSCP1A;NCP.NCP3AB8,

 NETA;SSCP1A;LN3A6

This sequence continues the reporting of the NCP resources by reporting the

second PU defined under the previously reported line, which is used for a

connection to a LEN node. This sequence shows:

v The short form of vertex 1 (long form of NCP already reported)

v The port data for LN3A6 was already reported, so the port is omitted from vertex

1

v Vertex 2 contains the contacted LEN node.

v The form of endpoint 1 containing an APPN TG and a logicalLink. The port

associated with this PU, although not provided in vertex 1, can be identified by

the portId attribute of the logicalLink.

Fourth sequence: (v1,e1)

 vertex 1 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

 class : t4Node

 moreInfo :

 NETA;SSCP1A;LN3A1 (SDLC line in NCP major node)

 class : port

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 connectionId : 0305

 adapterAddresses : ()

 lineType : nonswitched

 dlcName : SDLC

 relatedAdapter : NOINFO NULL

 dependencies : NETA;SSCP1A;NCP.NCP3AB8,

 NETA;SSCP1A;NCP3AB8

 endpoint 1: NETA;SSCP1A;P3A3767A (PU defined under LN3A1)

 class : logicalLink

 states :

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info :

 portId : LN3A1

Chapter 15. VTAM topology monitoring 203

partnerConnection : NOINFO NULL

 adjacentLinkStationAddress : LSADDR C2

 adjacentNodeType : t1 (type 1)

 dependencies : NETA;SSCP1A;NCP.NCP3AB8,

 NETA;SSCP1A;LN3A1

This sequence continues the reporting of the NCP resources by reporting another

line, a PU defined under the line, and a connection to a type 1 node. This sequence

shows:

v The short form of vertex 1 (long form of NCP already reported)

v The long form of port data for LN3A1 is included since it is the initial report of

LN3A1.

v The line / PU are being used for a connection to a type 1 node; VTAM does not

report connected type 1 nodes in vertex 2.

v The form of endpoint 1 containing only a logicalLink. There is no TG information

to report for a connection to a type 1 node.

Requesting and monitoring LU data (luCollection)

This section contains the following topics:

v “Overview”

v “Action request” on page 205

v “Initial data response” on page 205

v “Update data response” on page 206

v “Action termination” on page 208

v “luCollection snapshot data” on page 208

v “luCollection (PU) snapshot example” on page 209

Overview

This section describes the action that is used to request monitoring and stop

monitoring LU data for a given PU object or agent host object using the luCollection

managed object class.

Management of LUs requires that a manager application program be able to

request the names of all the LUs under a certain PU and to monitor their status.

The manager application program can use a snapshot action request against the

luCollection object to get LU information.

The VTAM agent supports two types of luCollection

1. luCollection against a specified physical unit. This form of luCollection is called

luCollection (PU) and returns all dependent LUs that are defined (either

statically or dynamically) under the PU. The physical unit must be defined at

the agent host for this command to be successful. For physical units that

represent connections to type 2.1 nodes, the independent logical units currently

using the PU as an adjacent link station (ALS) for sessions are also reported on

the luCollection snapshot response.

2. luCollection against the agent host. This form of luCollection which does not

specify a linkName in the luCollection distinguished name is called luCollection

(Host) and returns LU resources that are associated with the VTAM agent host.

This includes:

v Application programs

v CDRSCs

v USERVARs

v Generic resources

v Local non-SNA terminals

204 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

The reporting of all CDRSCs for luCollection (Host) can generate large amounts of

data to be processed because dynamic real CDRSCs as well as predefined CDRSCs

can be reported. With the exception of low-entry networking (LEN) independent

LUs, these CDRSCs can offer little benefit in terms of managing the network

because they represent resources that could be reported by agents at the nodes that

own the real resources represented by the CDRSCs. However, these CDRSCs might

be of interest in some environments. The user can select which types of CDRSCs

are to be included in the luCollection (Host) object reported by the VTAM topology

agent by specifying one of the following values on the OSITOPO start option:

v ILUCDRSC: Report independent LUs only. This is the default value if not

specified.

v ALLCDRSC: Report all CDRSCs, including independent LUs.

Note: This start option does not affect the reporting of independent LUs under

luCollection (PU).

Action request

A snapshot action request is used to request LU data from an agent node. The

action is sent as an m-Action-Confirmed operation.

The manager application program can request that any future updates to the

luCollection object be returned, as they occur. The LU data is requested without

updates by specifying the oneTimeOnly value in the request. The LU data and any

future updates can be requested by specifying the ongoing value in the request.

The following example shows a request to the target PU P3A3274A. The following

special identifiers are used in the request:

1.3.18.0.0.1811

luCollection

1.3.18.0.0.1815

luCollectionId

1.3.18.0.0.2222

snapshot
 msg CMIP-1.ROIVapdu (invokeID 196610, operation-value 7,

 argument (baseManagedObjectClass 1.3.18.0.0.1811, baseManagedObjectIns

 tance (distinguishedName (RelativeDistinguishedName (AttributeValueAss

 ertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relativ

 eDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.

 2032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.0.2133, attributeValue "P3A3274A

 ")), RelativeDistinguishedName (AttributeValueAssertion (attributeType

 1.3.18.0.0.1815, attributeValue "luCollection")))), actionInfo (actio

 nType 1.3.18.0.0.2222, actionInfoArg (start ongoing)))))

Initial data response

If the oneTimeOnly snapshot action is requested, all the data (initial data only) is

returned in action linked replies. To indicate that the data for the entire set of LUs

has been returned, the agent sends an additional ROIV action linked reply that is

an empty set. Then an RORS action response is sent with only the invoke identifier

of the original action request.

If the ongoing snapshot action was requested, all the initial data is returned in

action linked replies, as for the oneTimeOnly snapshot action. To indicate that the

initial data for the entire set of LUs has been returned, the VTAM topology agent

sends an additional ROIV action linked reply that is an empty set. The VTAM

topology agent is then ready to process updates for the luCollection object.

Chapter 15. VTAM topology monitoring 205

Table 14. Reported resources for luCollection (host) initial data

Resource Object class Notes

Non-SNA terminal LU Local terminal

Application program LU VTAM application program. Model not

reported.

CDRSC CDRSC Dynamic alias never reported. Others

affected by OSITOPO start option. Model

not reported.

USERVAR LU Group Report USERVAR name and value

Generic resource LU Group Report generic and real members

 Table 15. Reported resources for luCollection (PU) initial data

Resource Object class Notes

Dependent LU LU Logical Unit

ILU CDRSC ILU reported as CDRSC

Note: ILUs that have multiple sessions through the same PU (ALS) will only be

reported once.

Update data response

When the ongoing snapshot action has been issued and is currently in effect,

updates to the luCollection object results in the sending of a snapshot linked reply

with the update. In this case, only data pertinent to the subject LU flows in the

snapshot linked reply. In general, updates for luCollection (Host) are caused by the

activation or inactivation of a major node containing LU or CDRSC definitions or a

state change of these resources. Creation or deletion of USERVARs and generic

resources also cause updates.

206 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||

|||

|||

|||
|

|||
|
|

|||

|||
|

Table 16. Resources with reason for luCollection (host) update data

Resource Reason Notes

Non-SNA LU

or application

program

Creation Major node activation. Model application

ignored.

Deletion Major node inactivation. Model application

ignored.

State change Resource changed state. Model application

ignored.

CDRSC Creation Dynamic alias ignored. Model CDRSC

ignored.

Deletion Dynamic alias ignored. Model CDRSC

ignored.

State change Resource changed state. Model CDRSC

ignored.

Attribute value change CDRSC has a new owning CDRM. Model

CDRSC ignored.

LU Group Creation USERVAR or generic resource created

Deletion USERVAR or generic resource deleted

State change Not applicable

Attribute value change

(member added or member

deleted)

Not supported for this snapshot

Updates for luCollection (PU) are generally caused by state changes of dependent

LUs defined under a monitored PU. Also, creation or deletion of dynamic

dependent LUs as well as connection of independent LUs using the PU as an

adjacent link station (ALS) will result in updates.

 Table 17. Resources with reason for luCollection (PU) update data

Resource Reason Notes

Dependent LU Creation Dynamic LU created

Deletion Dynamic LU deleted

State change Dependent LU changed state

Independent

LU

Creation New session through adjacent link station

Deletion End last session through adjacent link

station

State change Not reported

Updates for the luCollection object can be merged with related updates by the

VTAM topology agent before being written to the snapshot linked replies.

A snapshot luUCollection is automatically cancelled when the PU supporting the

luCollection is deleted. luCollection updates are not merged when they are the result

of a VTAM-cancelled luCollection.

Some updates for luCollection snapshots might be reported under more than one

luCollection. For example, some updates, such as updates for independent LUs,

might be reported under several monitored PUs and also under the VTAM host.

Chapter 15. VTAM topology monitoring 207

||

|||

|
|
|

||
|

||
|

||
|

|||
|

||
|

||
|

||
|

|||

||

||

|
|
|

|

|

All VTAM host luCollection updates are merged, but updates for a specific PU are

not merged if the updates represent independent LUs.

Updates that report a deleted object are not merged.

Action termination

The VTAM topology agent terminates an ongoing snapshot action for the

luCollection object under the following conditions:

v A stop snapshot action request is received.

v An error occurs during snapshot processing in VTAM.

v The association that the snapshot is using terminates.

v The target PU object associated with the luCollection object is deleted.

When a stop snapshot action request is received, the agent sends an ROIV action

linked reply for the snapshot start request that is an empty set, an RORS action

response to the snapshot start request, and an RORS action response to the snapshot

stop request.

luCollection snapshot data

The linked-replies for luCollection are made up of multiple instances of the

following structure:

vertex1

 object --LU-related object distinguished name

 class --object class

 states --OSI states for this object

 info

 dependencies --object attribute

 residentNodePointer --object attribute

 nlrResidentNodePointer --object attribute

 luGroupMembers --object attribute

 cdrscRealLuName --object attribute

 userLabel --object attribute

 reason --reason for this vertex1 to be reported

The following list explains what the fields contain.

vertex1

Contains all data reported for a single LU-related object for either initial

data or for a single update for the object.

object Distinguished name of the LU-related object.

class Monitored LU-related objects are reported under the following object

classes:

v logicalUnit

v crossDomainResource

v luGroup (For USERVAR or generic resource)

states 14-character string for one of the following OSI states:

v operationalState

v usageState

v administrativeState

v availabilityStatus

v proceduralStatus

v unknownStatus

v nativeStatus

No states information is returned for luGroup

info Set of attributes for the LU-related object. Not all attributes are reported for

208 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

all object classes or are necessarily reported in the order shown in the

following tables Table 18 and Table 19. The following table shows which

attributes might be reported for an object class.

 Table 18. Attributes for luCollection (host) reported objects

Attribute LU CDRSC luGroup

dependencies X X

residentNodePointer X

nlrResidentNodePointer X

luGroupMembers X

cdrscRealLuName X

userLabel X X

tn3270DnsName X

tn3270IpAddress X

tn3270portNumber X

 Table 19. Attributes for luCollection (PU) reported objects

Attribute LU CDRSC

dependencies X X

residentNodePointer X

nlrResidentNodePointer X

cdrscRealLuName X

reason Indicates why the snapshot update is being sent:

Note: The reason field is omitted when the intended value is addOrUpdate.

Value Description

deleted

Object is deleted.

addOrUpdate

Object is added or changed. The default is addOrUpdate.

luCollection (PU) snapshot example

The following example shows an initial data response for the target PU P3A3274A.

This example shows only vertex1 data for LU L3A3278A:

 msg CMIP-1.ROIVapdu

 (invokeID 131075, linked-ID 196610, operation-value 2, argument (actio

 nResult (managedObjectClass 1.3.18.0.0.1811, managedObjectInstance (di

 stinguishedName (RelativeDistinguishedName (AttributeValueAssertion (a

 ttributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistingu

 ishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, att

 ributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.0.2133, attributeValue "P3A3274A")), Rela

 tiveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0

 .0.1815, attributeValue "luCollection")))), actionReply (actionType 1.

 3.18.0.0.2222, actionReplyInfo ((vertex1 (object (distinguishedName (R

 elativeDistinguishedName (AttributeValueAssertion (attributeType 1.3.1

 8.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName (Attribu

 teValueAssertion (attributeType 1.3.18.0.0.2032, attributeValue "SSCP1

 A")), RelativeDistinguishedName (AttributeValueAssertion (attributeTyp

 e 1.3.18.0.0.1984, attributeValue "NETA.L3A3278A")))), class 1.3.18.0.

Chapter 15. VTAM topology monitoring 209

0.1829, states 01000100000000, info (Attribute (attributeId 1.3.18.0.0

 .2194, attributeValue (dependents (and (Dependents (item (distinguishe

 dName (RelativeDistinguishedName (AttributeValueAssertion (attributeTy

 pe 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, attributeValu

 e "SSCP1A")), RelativeDistinguishedName (AttributeValueAssertion (attr

 ibuteType 1.3.18.0.0.2272, attributeValue "NCP.NCP3AB8"))))), Dependen

 ts (item (distinguishedName (RelativeDistinguishedName (AttributeValue

 Assertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Rela

 tiveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0

 .0.2032, attributeValue "SSCP1A")), RelativeDistinguishedName (Attribu

 teValueAssertion (attributeType 1.3.18.0.0.2133, attributeValue "NETA.

 P3A3274A"))))))))), Attribute (attributeId 1.3.18.0.0.2018, attributeV

 alue (distinguishedName (RelativeDistinguishedName (AttributeValueAsse

 rtion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relative

 DistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2

 032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeVa

 lueAssertion (attributeType 1.3.18.0.0.2133, attributeValue "NETA.P3A3

 274A"))))))))))))

The following translated initial data shows LU L3A3278A is active but not used,

under PU P3A3274A. The userLabel attribute is not reported because the LU is not

an application with an ACBNAME.

 luCollection object name: NETA;SSCP1A;P3A3274A;luCollection

 vertex 1: NETA;SSCP1A;NETA.L3A3278A

 class : logicalUnit

 states

 Operational State : Enabled

 Usage State : Idle

 Administrative State: Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info

 residentNodePointer : NETA;SSCP1A;NETA.P3A3274A

 dependencies: : NETA;SSCP1A;NCP.NCP3AB8

 NETA;SSCP1A;NETA.P3A3274A

The following example shows update data for the target PU P3A3274A. The

example includes vertex1 data for LU L3A3278A. The following special identifiers

are used in the responses:

1.3.18.0.0.1811

luCollection

1.3.18.0.0.1815

luCollectionId

1.3.18.0.0.2222

snapshot
 msg CMIP-1.ROIVapdu

 (invokeID 131077, linked-ID 196610, operation-value 2, argument (actio

 nResult (managedObjectClass 1.3.18.0.0.1811, managedObjectInstance (di

 stinguishedName (RelativeDistinguishedName (AttributeValueAssertion (a

 ttributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistingu

 ishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, att

 ributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.0.2133, attributeValue "P3A3274A")), Rela

 tiveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0

 .0.1815, attributeValue "luCollection")))), actionReply (actionType 1.

 3.18.0.0.2222, actionReplyInfo ((vertex1 (object (distinguishedName (R

 elativeDistinguishedName (AttributeValueAssertion (attributeType 1.3.1

 8.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName (Attribu

210 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

teValueAssertion (attributeType 1.3.18.0.0.2032, attributeValue "SSCP1

 A")), RelativeDistinguishedName (AttributeValueAssertion (attributeTyp

 e 1.3.18.0.0.1984, attributeValue "NETA.L3A3278A")))), class 1.3.18.0.

 0.1829, states 01010100000001, info ())))))))

The following translated update data shows a session with LU L3A3278A was

started. No attributes are reported since this update represents a state change.

 luCollection object name: NETA;SSCP1A;P3A3274A;luCollection

 vertex 1: NETA;SSCP1A;NETA.L3A3278A

 class : logicalUnit

 states

 Operational State : Enabled

 Usage State : Active

 Administrative State : Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active with session

The following example shows attribute data for APPL APPL1A which represents a

TN3270 connection with an IP address, DNS and port.

 msg CMIP-1.RORSapdu (invokeID 196616, re

 sultOption (operation-value 3, result (managedObjectClass 1.

 3.18.0.0.1829, managedObjectInstance (distinguishedName (Rel

 ativeDistinguishedName (AttributeValueAssertion (attributeTy

 pe 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistingu

 ishedName (AttributeValueAssertion (attributeType 1.3.18.0.0

 .2032, attributeValue "SSCP1A")), RelativeDistinguishedName

 (AttributeValueAssertion (attributeType 1.3.18.0.0.1984, att

 ributeValue "NETA.APPL1")))), currentTime "2002/11/07-08:47:

 22.0", attributeList (Attribute (attributeId 2.9.3.2.7.31, a

 ttributeValue unlocked), Attribute (attributeId 2.9.3.2.7.50

 , attributeValue ()), Attribute (attributeId 1.2.124.360501.

 1.209, attributeValue ()), Attribute (attributeId 2.9.3.2.7.

 33, attributeValue ()), Attribute (attributeId 1.3.18.0.0.21

 94, attributeValue (dependents (and (Dependents (item (disti

 nguishedName (RelativeDistinguishedName (AttributeValueAsser

 tion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")),

 RelativeDistinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2032, attributeValue "SSCP1A")), RelativeD

 istinguishedName (AttributeValueAssertion (attributeType 1.3

 .18.0.0.2272, attributeValue "APPL.APPL1A"))))), Dependents

 (item (distinguishedName (RelativeDistinguishedName (Attribu

 teValueAssertion (attributeType 1.3.18.0.2.4.6, attributeVal

 ue "NETA")), RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.0.2032, attributeValue "SSCP1A")

)))))))), Attribute (attributeId 1.2.124.360501.1.240, attri

 buteValue (string "APPL1")), Attribute (attributeId 1.3.18.0

 .0.1984, attributeValue "NETA.APPL1"), Attribute (attributeI

 d 1.3.18.0.0.1819, attributeValue "APPL1"), Attribute (attri

 buteId 2.9.3.2.7.63, attributeValue 1.3.18.0.0.1911), Attrib

 ute (attributeId 1.3.18.0.0.2080, attributeValue 0), Attribu

 te (attributeId 2.9.3.2.7.65, attributeValue 1.3.18.0.0.1829

), Attribute (attributeId 2.9.3.2.7.35, attributeValue enabl

 ed), Attribute (attributeId 2.9.3.2.7.66, attributeValue (OB

 JECT-IDENTIFIER 2.9.3.2.4.16, OBJECT-IDENTIFIER 2.9.3.2.4.17

 , OBJECT-IDENTIFIER 0.0.13.3100.0.4.1, OBJECT-IDENTIFIER 1.3

 .14.2.2.2.40, OBJECT-IDENTIFIER 1.3.14.2.2.2.35, OBJECT-IDEN

 TIFIER 1.3.18.0.0.1871, OBJECT-IDENTIFIER 1.3.18.0.0.2066, O

 BJECT-IDENTIFIER 1.3.18.0.0.1818, OBJECT-IDENTIFIER 1.2.124.

 360501.10.62, OBJECT-IDENTIFIER 1.3.18.0.0.7898)), Attribute

 (attributeId 2.9.3.2.7.36, attributeValue ()), Attribute (a

 ttributeId 1.3.18.0.0.2018, attributeValue (distinguishedNam

Chapter 15. VTAM topology monitoring 211

e (RelativeDistinguishedName (AttributeValueAssertion (attri

 buteType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDi

 stinguishedName (AttributeValueAssertion (attributeType 1.3.

 18.0.0.2032, attributeValue "SSCP1A"))))), Attribute (attrib

 uteId 1.2.124.360501.1.302, attributeValue (noResources none

)), Attribute (attributeId 1.3.18.0.0.7901, attributeValue (

 ipv6 "8:7:6:5:4:3:2:1%ZONE1ABC")), Attribute (attributeId 1.

 3.18.0.0.7902, attributeValue (portNumber "1027")), Attribut

 e (attributeId 1.3.18.0.0.7900, attributeValue (fullName "AB

 CDEFGH")), Attribute (attributeId 2.9.3.2.7.38, attributeVal

 ue FALSE), Attribute (attributeId 2.9.3.2.7.39, attributeVal

 ue idle), Attribute (attributeId 0.0.13.3100.0.7.50, attribu

 teValue "APPL1")))))

The following translated data shows an IPv6 type IP address with zone, the DNS

and port.

Name : NETA.SSCP1A.NETA.APPL1(luName)

 Class : LU

 Attribute List :

 administrativeState : UNLOCKED

 attachedCircuitList : ()

 availabilityStatus : ()

 functionId : APPL1

 luName : NETA.APPL1

 luSecondName : APPL1

 nameBinding : LU_not_TYPE5

 nativeStatus : ACT

 objectClass : LU

 operationalState : ENABLED

 proceduralStatus : ()

 residentNodePointer : NETA.SSCP1A(snaNodeName)

 tn3270ClientIpAddress : 8:7:6:5:4:3:2:1%ZONE1ABC

 tn3270ClientPortNumber : 1027

 tn3270ClientDnsName : ABCDEFGH

 unknownStatus : FALSE

 usageState : IDLE

 userLabel : APPL1

Monitoring resources through event reports

This section contains the following topics:

v “Overview”

v “Management of the event reporting environment” on page 213

v “Creation of the event forwarding discriminator” on page 213

v “Reporting events to the manager application program” on page 214

v “Event report data” on page 214

v “Event report example” on page 216

Overview

A manager application program can monitor certain resource objects maintained by

the VTAM topology agent for certain defined events. The VTAM topology agent

uses the event reporting in CMIP services to monitor resources.

The resource monitoring process consists of:

v Management of the event reporting environment

v Notification of events from the agent application program to the manager

application program

212 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Management of the event reporting environment

The event reporting environment is mostly determined by the set of event

forwarding discriminator (EFD) objects that exist at any given time. The VTAM

topology agent does not become involved with the management of the event

reporting environment. CMIP services handles the creation and maintenance of the

event reporting environment.

The event reporting environment for the VTAM topology agent is determined

partly by the OSIEVENT start option. For a description of the factors that control

the event reporting environment, refer to “Special considerations for topology

manager application programs” on page 14.

Creation of the event forwarding discriminator

The manager application program can create an EFD object at CMIP services by

sending a CMIP create request specifying:

v A managed object class (EFD)

v A managed object instance

v The discriminator construct that is used to filter notifications

v The destination that contains the name of the object (application program) that

should receive event reports

The following example shows a CMIP create EFD request; the discriminator

construct passes only LU group change notifications.

The following special identifiers are used in the request:

2.9.3.2.3.4

eventForwardingDiscriminator

2.9.3.2.7.1

discriminatorId

2.9.3.2.7.56

discriminatorConstruct

2.9.3.2.7.14

eventType

1.3.18.0.0.1810

luGroupChangeNotif

2.9.3.2.7.55

destination

1.3.18.0.0.2175

managerApplicationName
 msg CMIP-1.ROIVapdu (invokeID 196611, operation-value 8,

 (managedObjectClass 2.9.3.2.3.4,(managedObjectInstance (distinguishedN

 ame (RelativeDistinguishedName (AttributeValueAssertion (attributeType

 1.3.18.0.2.4.6, attributeValue NETA)), RelativeDistinguishedName (Att

 ributeValueAssertion (attributeType 2.9.3.2.7.4, attributeValue (name

 SSCP1A))), RelativeDistinguishedName (AttributeValueAssertion (attribu

 teType 2.9.3.2.7.1, attributeValue (string luGrCh)))))),attributeList(

 (attributeId 2.9.3.2.7.31,attributeValue unlocked),(attributeId 2.9.3.

 2.7.56,attributeValue (item (equality (attributeId 2.9.3.2.7.14,attrib

 uteValue 1.3.18.0.0.1810)))),(attributeId 2.9.3.2.7.55,attributeValue

 (single (name (RDNSequence (RelativeDistinguishedName (AttributeValueA

 ssertion (attributeType 1.3.18.0.2.4.6, attributeValue NETA)), Relativ

 eDistinguishedName (AttributeValueAssertion (attributeType 2.9.3.2.7.4

 , attributeValue (name SSCP1A))), RelativeDistinguishedName (Attribute

 ValueAssertion (attributeType 1.3.18.0.0.2175, attributeValue Manager)

)))))))))

Chapter 15. VTAM topology monitoring 213

Reporting events to the manager application program

Once the resource monitoring environment is created, unsolicited management

information can flow from the agent to the manager. When certain defined events

occur, a resource object sends a notification. The VTAM topology agent sends this

notification data to CMIP services. CMIP services applies the filtering constructs

based on active EFDs to the notification message. If it is determined that the event

matches a filter, CMIP services determines which manager application program

should receive the message in an event report. Note that multiple event reports

might be sent to multiple destinations based on a single notification event. This

situation might occur when multiple EFD filters are satisfied by a particular

notification event.

The event notification data is subject to the same merge process used for the

snapshot data. See “ACTION(snapshot) update merging” on page 168 for a

description of the merge process. The merging of event data is based on the state

of the resource being reported. If the state to be reported is a transient state

(non-resting state), the event data is held and merged with other event data until

the resource is reporting event data with a resting state. As with the snapshot merge

process, the event merging is timed such that resources that remain in transient

states too long are reported.

Merging event data has an additional consideration that does not apply to the

snapshot update data: the event data specifies the reason for the event. It is possible

for event data with different reasons to be merged. In that case, the general rule

used by the VTAM topology agent is that the reason for event data that was

merged last is used in the reported notification. For example, if an object-creation

event occurred but the state was a transient state, the event data is held.

Subsequent state-change event data might be merged with the object-creation data.

When the event notification is finally sent, the reason specifies state-change. The

manager application program can infer the creation of the object by having no

previous report of the object.

CMIP services sends the notification data to the manager in the form of a CMIP

event-report request. VTAM supports unconfirmed event-reports only

(m-EventReport).

Changes affecting network resources result in notifications that might flow to a

manager application program. The VTAM topology agent supports notifications

for:

v State change

v Object creation

v Object deletion

v LU group change

Event report data

Data in the m-EventReport request appear in the following structure:

 managedObjectClass --object class

 managedObjectInstance --object distinguished name

 eventTime --time stamp

 eventType --event type

 --No further info for objectCreation and objectDeletion

 --Added for stateChange eventType

 eventInfo

 attributeIdentifierList --new attribute identifiers

214 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

stateChangeDefinition

 nativeStatus --object attribute

 operationalState --object attribute

 usageState --object attribute

 availabilityStatus --object attribute

 proceduralStatus --object attribute

 unknownStatus --object attribute

--Added for luGroupChangeNotif eventType

 eventInfo

 notifReason --reason for LU group change

 luName --group member name

 luGroupSize --group size

managedObjectClass

Object classes for the reported resource.

managedObjectInstance

Distinguished name of the reported resource.

eventTime

Time stamp with the current system time when the event report is built

from the corresponding notification.

eventType

One of the following events:

v stateChange

v objectCreation

v objectDeletion

v luGroupChangeNotif (for USERVARs, Generic Resources, and IP info

attributes for TN3270 connection LUs.)

ObjectCreation of an luGroup object is considered an luGroupChangeNotif

event. The VTAM topology agent reports the member that caused the

object to be created. The manager application program can infer the

creation of the object by monitoring for this event report.

attributeIdentifierList

List of attributes identifiers, also provided in the following

stateChangeDefinition field, for which new values are provided.

stateChangeDefinition

Contains six out of seven OSI states in the attribute form, rather than in

the OCTET string form. The VTAM topology agent returns all attributes

with the current values.

 administrativeState is omitted because the value is always assumed to be

unlocked.

notifReason

One of the following reasons for LU group change.

v luAdded

v luDeleted

luName

Name of member in LU group that caused the event.

luGroupSize

Number of members in LU group.

Chapter 15. VTAM topology monitoring 215

Event report example

The following example shows an event report for an LU group change.

The following special identifiers are used in the event report:

1.3.18.0.0.1803

luGroup

1.3.18.0.0.1807

luGroupName

1.3.18.0.0.1810

luGroupChangeNotif
 msg CMIP-1.ROIVapdu (invokeID 65541, operation-value 0,

 argument (managedObjectClass 1.3.18.0.0.1803, managedObjectInstance (d

 istinguishedName (RelativeDistinguishedName (AttributeValueAssertion (

 attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDisting

 uishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, at

 tributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsse

 rtion (attributeType 1.3.18.0.0.1807, attributeValue "GENERIC1")))), e

 ventTime "1994/10/17-11:08:18.0", eventType 1.3.18.0.0.1810, eventInfo

 (notifReason luAdded, luName "NETA.APPL2", luGroupSize 1)))

The following translated event data shows that LU NETA.APPL2 has been added

to the LU group GENERIC1 (a generic resource name).

 Resource name : NETA;SSCP1A;GENERIC1

 class : luGroup

 eventTime : 1994/10/17-11:08:18.0

 eventType : luGroupChangeNotif

 eventInfo

 notifReason : luAdded

 luName : NETA.APPL2

 luGroupSize : 1

The following example shows an event report for a state change.

The following special identifiers are used in the event report:

1.3.18.0.0.1829

logicalUnit

2.9.3.2.10.14

stateChange
 msg CMIP-1.ROIVapdu (invokeID 65551, operation-value 0,

 argument (managedObjectClass 1.3.18.0.0.1829, managedObjectInstance (d

 istinguishedName (RelativeDistinguishedName (AttributeValueAssertion (

 attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDisting

 uishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, at

 tributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsse

 rtion (attributeType 1.3.18.0.0.1984, attributeValue "NETA.APPL2")))),

 eventTime "1995/01/27-14:16:20.0", eventType 2.9.3.2.10.14, eventInfo

 (attributeIdentifierList (AttributeId 1.3.18.0.0.2080, AttributeId 2.

 9.3.2.7.35, AttributeId 2.9.3.2.7.39, AttributeId 2.9.3.2.7.33, Attrib

 uteId 2.9.3.2.7.36, AttributeId 2.9.3.2.7.38), stateChangeDefinition (

 (attributeID 1.3.18.0.0.2080, newAttributeValue 0), (attributeID 2.9.3

 .2.7.35, newAttributeValue enabled), (attributeID 2.9.3.2.7.39, newAtt

 ributeValue idle), (attributeID 2.9.3.2.7.33, newAttributeValue ()), (

 attributeID 2.9.3.2.7.36, newAttributeValue ()), (attributeID 2.9.3.2.

 7.38, newAttributeValue FALSE))))))

The following translated event data shows that LU NETA.APPL2 has changed

state. This event report example was reported because of an EFD set to monitor

state changes.

216 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Resource name : NETA;SSCP1A;NETA.APPL2

 Class : logicalUnit

 eventTime : 1995/01/27-14:16:20.0

 eventType : stateChange

 AttributeIdentifierList

 nativeStatus

 operationalState

 usageState

 availabilityStatus

 proceduralStatus

 unknownStatus

 StateChangeDefinition

 nativeStatus : newAttributeValue ACTIVE

 operationalState : newAttributeValue ENABLED

 usageState : newAttributeValue IDLE

 availabilityStatus : newAttributeValue ()

 proceduralStatus : newAttributeValue ()

 unknownStatus : newAttributeValue FALSE

Chapter 15. VTAM topology monitoring 217

218 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 16. Requesting specific resource data

This chapter describes how the VTAM topology agent gathers information about

specific resources. The following topics are included:

v Requesting specific resource data (GET)

v Requesting specific resource data (logicalUnitIndex)

Requesting specific resource data (GET)

This section contains the following topics:

v “Overview”

v “GET request”

v “Network-qualified names and GET requests” on page 221

v “GET response” on page 222

v “GET data” on page 223

v “GET data example” on page 223

Overview

The CMIP GET operation can be used by a manager application program to obtain

resource information for a single named resource. The object class of the resource

might not be known, so it is not necessary that the manager application program

know the exact object class of a particular resource before using the GET operation

to obtain information about that resource. It is necessary, however, that the

manager application program know the name of the resource and that the name be

properly constructed for the object class containing the resource.

If the VTAM topology agent receives a GET request for a known resource, the

VTAM topology agent provides a single GET response containing the requested

resource information, as it exists when the GET request is processed.

GET request

The GET request contains the following information:

object class

If the object class of the resource is known, it can be specified in the

request as the object identifier (OI) representing the appropriate class. If

the class is not known, the class can be specified as actualClass (2.9.3.4.3.42).

actualClass is a special class specification that tells the VTAM topology

agent that the class is unknown and that the VTAM topology agent should

return the real object class in the GET response.

 The object class can be specified as a class higher in the inheritance tree

than the real class of the resource. An object in the lower (real) class can

validly respond to a request as if the object were in the higher (requested)

class. Another way to state this behavior is that the lower class can act

allomorphically to the higher class; it can emulate the higher class. For

example, if a VTAM node is an interchange node (combination type 5 node

and APPN network node) and the VTAM topology agent at that VTAM

node receives a GET request for the VTAM node that specifies the t5Node

object class, the VTAM topology agent at that node can respond to the

request since the interchangeNode class inherits from the t5Node class,

allowing an object in the interchangeNode class to act allomorphically to the

t5Node class. If the VTAM node is a t5Node and the VTAM topology agent

© Copyright IBM Corp. 1995, 2005 219

received a request specifying an interchangeNode, the request is rejected,

since a t5Node cannot act as an interchangeNode.

object instance

The distinguished name of the object must be provided in the GET request.

Although the object class might not be known, the naming attribute used

in the object instance name must be a valid naming attribute for the object

class in which the resource exists. No generic form exists for naming

attribute (similar to actualClass) that can apply to any class. Note that the

first two relative distinguished names (RDNs) in the distinguished name

must be the netID and node name of the VTAM topology agent host.

scope The VTAM topology agent does not support the scoping function;

therefore, the optional scope information can be omitted from the GET

request. If scope is specified in the request, the associated scope value must

be specified as '(basicScope 0)'.

filter The VTAM topology agent does not support the filtering function;

therefore, the optional filter information can be omitted from the GET

request. If the filter is specified in the request, the associated filter value

must be specified as either '(and ())' or '(or ())'.

attribute list

The attribute list contains a set of OIs representing the attributes of the

object for which the manager application program is requesting

information. The attributes must be defined in the requested object class, or

the discovered object class if actualClass is specified. They must also be

among the attributes supported by the VTAM topology agent. For the list

of supported attributes, refer to Appendix E, “VTAM topology agent object

and attribute tables,” on page 301. The attribute list can be omitted from

the GET request. Omitting it indicates to the VTAM topology agent that all

supported attributes for the object class (specified or discovered) must be

provided in the GET response.

The VTAM topology agent supports GET requests for resources in the following

object classes:

v appnEN

v appnNN

v appnRegisteredLu

v crossDomainResource

v definitionGroup

v interchangeNode

v lenNode

v logicalLink

v logicalUnit

v luGroup

v migrationDataHost

v port

v t2-1Node

v t4Node

v t5Node

Certain object classes are named with netID and snaNodeName; the object instance

names for objects in these classes must be the VTAM topology agent host name for

GET requests for these objects to be routed to the VTAM topology agent. For

example, a VTAM topology agent at node NETA;SSCP1A might report node

NETA;SSCP2A as a type 5 node in a snaLocalTopo response. A subsequent GET

request sent to object NETA;SSCP2A will not be routed to the VTAM topology

220 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

agent at node NETA;SSCP1A because the object instance name in the GET request

is not named under NETA;SSCP1A, the VTAM topology agent name. This situation

applies to the following object classes:

v appnEN

v appnNN

v interchangeNode

v migrationDataHost

v t5Node

Network-qualified names and GET requests

GET requests for logicalLink, logicalUnit, crossDomainResource, and appnRegisteredLU

can specify a network-qualified name as the third RDN in the distinguished name.

The name can also be specified without being network qualified. The VTAM

topology agent determines whether the name matches the name of a resource at

the VTAM topology agent host and verifies that the resource found is the correct

type for the naming attribute specified in the GET request.

Rules for matching names by object type are listed here:

logicalLink

If the linkName attribute is network qualified, the netID must be the same

as the netID of the VTAM topology agent host receiving the GET request.

logicalUnit

If the luName attribute is network qualified, the netID must be the same as

the netID that VTAM display commands require for displaying the

resource. The VTAM topology agent host netID will always work. For

dependent LUs that are attached to a non-native PU type 2.1 node

(nonnative network attachment), the netID of the physical unit will also be

accepted. A non-network qualified name always has a default netID that is

the same as the VTAM topology agent host netID.

 For application logical units, the luName attribute can specify the name

coded on the ACBNAME operand of the APPL definition statement. For

this name to match, it must be either non-network-qualified or network

qualified with the netID of the VTAM topology agent host. When a match

occurs, the VTAM topology agent host returns data for the application

program with the specified ACBNAME.

crossDomainResource

If the nonLocalResourceName attribute is specified with a network-qualified

name, the name and netID must exactly equal the name and netID of the

CDRSC for a match to occur. If a non-network-qualified name is given, the

name will only match a CDRSC that has been added to the VTAM

topology agent host SRT directory.

 The nonLocalResourceName attribute can also specify the name coded on the

LUALIAS operand of a CDRSC definition. For this name to match, the

name must be either non-network-qualified or qualified with the netID of

the VTAM topology agent host.

appnRegisteredLU

If the nonLocalResourceName attribute is specified with a network-qualified

name, the name and netID must exactly match the name and netID of the

registered LU. If a non-network-qualified name is given, the name will

only match a registered LU with the netID of the VTAM topology agent

host.

Chapter 16. Requesting specific resource data 221

The following example shows a GET request for resource data:

 msg CMIP-1.ROIVapdu (invokeI D 196610, operation-

 value 3, argument (baseManagedObjectClass 1.3.18.

 0.0.1844, baseManagedObjectInstance (distinguishe

 dName (RelativeDistinguishedName (AttributeValueA

 ssertion (attributeType 1.3.18.0.2.4.6, attribute

 Value "NETA")), RelativeDistinguishedName (Attrib

 uteValueAssertion (attributeType 1.3.18.0.0.2032,

 attributeValue "SSCP1A")), RelativeDistinguished

 Name (AttributeValueAssertion (attributeType 1.3.

 18.0.0.2032, attributeValue "NCP3AB8")))), attrib

 uteIdList (AttributeId 2.9.3.2.7.33, AttributeId

 1.3.18.0.0.2035, AttributeId 1.3.18.0.0.2036, Att

 ributeId 1.3.18.0.0.1971, AttributeId 1.3.18.0.0.

 2080, AttributeId 2.9.3.2.7.35, AttributeId 2.9.3

 .2.7.36, AttributeId 2.9.3.2.7.39)))

Note from the example that the class specified is t4Node and that the object

instance is NETA;SSCP1A;NCP3AB8. There is no scope or filter specified. The

attribute list is specified and contains the following attributes:

v availabilityStatus

v subareaAddress

v subareaLimit

v gatewayNode

v nativeStatus

v operationalState

v proceduralStatus

v usageState

GET response

When the VTAM topology agent successfully processes a GET request that contains

only valid data, the GET response is in the form of a single RORS message. The

RORS specifies the object class, object instance, and the list of requested attributes

and their values, as they exist when the GET request is processed.

If the real object class is found to be a valid allomorph for the requested object

class, then the list of attributes reported in the response is limited to attributes

defined in the requested class. For example, if requested class is t5Node and an

attribute list is not specified in the request, and if the resource is discovered to be

an interchangeNode, the GET response includes an object class of interchangeNode,

the same object instance name as the request, and the list of attributes defined in

the t5Node object class. Attributes of the interchangeNode that are not defined also in

the t5Node class are not provided in the response.

If the requested resource is found to be in an object class other than the class

specified, and the discovered class is not a valid allomorph for the requested class,

then the GET response is an ROER error message, with error value of

noSuchObjectInstance.

If the naming attribute specified in the object instance name is not valid for the

object class specified, the GET response is an ROER, with error value of

noSuchObjectInstance. If actualClass is specified in the request, and the naming

attribute specified in the object instance is not valid for the discovered object class,

then the GET response is an ROER error message, with error value of

noSuchObjectInstance.

If an attribute list is specified in the GET request, and one of more of the specified

attributes are not defined in the requested or discovered class, then the GET

222 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

response is an ROER, with error value indicating a getListError error. The

getListError syntax specifies that each requested attribute be listed in the

response, with an indication of whether the attribute is valid or not valid. The

valid atttributes are then accompanied by their requested values.

If the resource name specified in the object instance of a request is not known to

VTAM, the GET response is an ROER message, with error value indicating a

noSuchObjectInstance.

Note that it is possible to specify the same attribute multiple times in the attribute

list in the GET request. If valid attributes are specified multiple times, the VTAM

topology agent ignores the secondary specifications and returns each attribute

value only one time in the GET response. If, however, attributes that are not valid

are specified multiple times in the GET request, the VTAM topology agent

indicates an attribute error in the GET response for each attribute that is not valid.

GET data

The following shows the major data fields that comprise the GET response:

v object class

v object instance

v attribute list:

– attribute ID

– attribute value

GET data example

The following is an example of the GET response that the VTAM topology agent

may return for the GET request example shown previously.

 msg CMIP-1.RORSapdu (invokeID

 196610, resultOption (operation-value 3, result

 (managedObjectClass 1.3.18.0.0.1844, managedObjec

 tInstance (distinguishedName (RelativeDistinguish

 edName (AttributeValueAssertion (attributeType 1.

 3.18.0.2.4.6, attributeValue "NETA")), RelativeDi

 stinguishedName (AttributeValueAssertion (attribu

 teType 1.3.18.0.0.2032, attributeValue "SSCP1A"))

 , RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.0.2032, attributeValu

 e "NCP3AB8")))), currentTime "1995/04/24-10:03:50

 .0", attributeList (Attribute (attributeId 2.9.3.

 2.7.33, attributeValue ()), Attribute (attributeI

 d 1.3.18.0.0.1971, attributeValue FALSE), Attribu

 te (attributeId 1.3.18.0.0.2080, attributeValue 0

), Attribute (attributeId 2.9.3.2.7.35, attribute

 Value enabled), Attribute (attributeId 2.9.3.2.7.

 36, attributeValue ()), Attribute (attributeId 1.

 3.18.0.0.2035, attributeValue 3), Attribute (attr

 ibuteId 1.3.18.0.0.2036, attributeValue 255), Att

 ribute (attributeId 2.9.3.2.7.39, attributeValue

 active)))))

Note that the requested attributes were all returned with the following values:

 availabilityStatus : ()

 gatewayNode : FALSE

 nativeStatus : 0 (means active)

 operationalState : enabled

 proceduralStatus : ()

 subareaAddress : 3

 subareaLimit : 255

 usageState : active

Chapter 16. Requesting specific resource data 223

Requesting specific resource data (logicalUnitIndex)

This section contains the following topics:

v “Overview”

v “Action request”

v “Initial data response” on page 225

v “Action termination” on page 226

v “logicalUnitIndex snapshot data” on page 226

v “logicalUnitIndex snapshot example” on page 227

Overview

The logicalUnitIndex collection object allows a user to request a snapshot for all

LU-related resources that match a given name.

logicalUnitIndex is used to report on LUs, CDRSCs, USERVARs and generic

resources, without forcing a manager application program to understand the actual

resource class in advance. When a snapshot is issued against the logicalUnitIndex

object, certain information on all resources that match the name supplied by the

snapshot and that are LUs, CDRSCs, USERVARs or generic resources is returned.

For logicalUnitIndex, only the oneTimeOnly snapshot action is supported. No update

data can be requested or is ever returned for this snapshot.

Action request

A snapshot action request is used to request LU-related resource data. The action is

sent as an m-Action-Confirmed operation.

The snapshot request for logicalUnitIndex object can specify whether or not a

network search is requested for the target name, in addition to looking for

matching resources in the VTAM topology agent host node. The search information

is specified in the snapshot request through values of a managementExtension with

the luSearchParm parameter where information is set to 0 for no-search or 1 for

search. Without the managementExtension search parameter, the default is not to

perform a network search.

The target resource logicalUnitIndexName can be network qualified, such as

NETA.APPL1.

The following example shows a request with the target name NETA.APPL1, with

“no-search” explicitly specified by the 0 value for information in the luSearchParm

managementExtension.

The following special identifiers are used in the request:

1.3.18.0.0.2291

logicalUnitIndex

1.3.18.0.0.2294

logicalUnitIndexName

1.3.18.0.0.2222

snapshot

1.3.18.0.0.5946

luSearchParm
 msg CMIP-1.ROIVapdu (invokeID 196612, operation-value 7,

 argument (baseManagedObjectClass 1.3.18.0.0.2291, baseManagedObjectIns

 tance (distinguishedName (RelativeDistinguishedName (AttributeValueAss

 ertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relativ

224 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

eDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.

 2032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.0.2294, attributeValue"NETA.APPL

 1")))), actionInfo (actionType 1.3.18.0.0.2222, actionInfoArg (start o

 neTimeOnly, addlInfo (ManagementExtension (identifier 1.3.18.0.0.5946,

 significance TRUE, information 0))))))

Initial data response

Several objects can be reported for the target name. For example, any of the

following combinations are possible:

v A CDRSC might be found on the local VTAM and the corresponding LU might

be found on a remote VTAM.

v Both an LU and a USERVAR of the same name might be found on the local

VTAM.

v Different LUs with the same name might be found in different networks.

With the oneTimeOnly action requested, all the data is returned in linked-replies.

Then, to indicate that the data for the entire set of LUs has been returned, the

VTAM topology agent sends an additional ROIV linked-reply that is an empty set

ROIV followed by an RORS response with only the invoke identifier of the original

action request.

 Table 20. Reported resources for logicalUnitIndex data

Resource Object class Notes

Non-SNA terminal LU Local terminal

Application LU Model ignored

Dependent LU LU

CDRSC CDRSC Dynamic alias is ignored. Model ignored.

USERVAR LUgroup Report USERVAR name and value

Generic resource LUgroup Report generic and real members

If no resource is found for the target name in either the VTAM topology agent host

or any remote host being searched, the response is an ROER with error value 1

(noSuchObjectInstance).

If a search fails because of a normal VTAM failure to have sessions with a remote

host, a processingFailure ROER or a linked-reply ROIV with specificErrorInfo of

snaDefinedError with SNA sense information is sent, possibly after some valid ROIV

linked-replies have already been sent for resources found for the target name.

In the following example, an ROER returns SNA sense information because there is

no link to the host where the resource was known to be present. (NETAPPL1 has

already been reported as a CDRSC owned by SSCP2A).

 msg CMIP-1.ROERapdu (invokeID 196610, error-value 10

 , parameter (managedObjectClass 1.3.18.0.0.2291, managedObjectInstanc

 e (distinguishedName (RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeD

 istinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2

 032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeV

 alueAssertion (attributeType 1.3.18.0.0.2294, attributeValue "NETAPPL

 1")))), specificErrorInfo (errorId 1.3.18.0.0.2266, errorInfo (senseD

 ata 087D0001, productIdentification "ACF/VTAM.4.3.0"))))

The translated ROER data follows:

Chapter 16. Requesting specific resource data 225

||

|||

|||

|||

|||

|||

|||

|||
|

error-value : processingFailure

 logicalUnitIndexName : NETA;SSCP1A;NETAPPL1

 SpecificErrorInfo

 ErrorID : snaDefinedError

 ErrorInfo : senseData 087D0001

 productIdentification "ACF/VTAM.4.3.0"

Action termination

The VTAM topology agent terminates a snapshot action for the logicalUnitIndex

object under the following conditions:

v The requested data has been sent.

v An error occurs during snapshot processing in VTAM.

v The association that the snapshot is using terminates.

logicalUnitIndex snapshot data

The linked-replies for logicalUnitIndex contain data made up of one instance or

multiple instances of the following structure:

 vertex1

 object LU-related object distinguished name

 class object class

 states OSI states for this object

 info

 dependencies object attribute

 nlrResidentNodePointer object attribute

 luGroupMembers object attribute

 cdrscRealLuName object attribute

 userLabel object attribute

The following list describes what each field contains.

vertex1

Contains all data reported for a single LU-related object.

class Monitored LU-related objects are reported under the following object

classes:

v logicalUnit

v crossDomainResource

v luGroup (for USERVAR or generic resource)

A remote LU that appears to the VTAM topology agent as a CDRSC is

reported as an LU under its owning node if the remote LU is found under

that node as a result of a network search.

states 14-character string for the following OSI states:

v operationalState

v usageState

v administrativeState

v availabilityStatus

v proceduralStatus

v unknownStatus

v nativeStatus

No states information is returned for luGroup. No states information is

returned if the object was found as the result of a network search.

info Set of attributes for the LU-related object. The info field and the attributes

that follow are not included if the object was found as the result of a

network search.

 Not all attributes are reported for all object classes or are necessarily

reported in the order shown in the above structure. The following chart

226 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

shows which attributes are possibly reported for an object class.

 Table 21. Attributes for logicalUnitIndex reported objects

Attribute LU CDRSC luGroup

dependencies X X

nlrResidentNodePointer X

luGroupMembers X

cdrscRealLuName X

userLabel X X

logicalUnitIndex snapshot example

The following example shows the data response for the target name NETA.APPL1.

The example includes vertex1 data for one resource found in SSCP1A.

The following special identifiers are used in the response:

1.3.18.0.0.2291

logicalUnitIndex

1.3.18.0.0.2294

logicalUnitIndexName

1.3.18.0.0.2222

snapshot

1.3.18.0.0.2194

dependencies

0.0.13.3100.0.7.50

userLabel
 msg CMIP-1.ROIVapdu

 (invokeID 131077, linked-ID 196612, operation-value 2, argument (actio

 nResult (managedObjectClass 1.3.18.0.0.2291, managedObjectInstance (di

 stinguishedName(RelativeDistinguishedName (AttributeValueAssertion (at

 tributeType 1.3.18.0.2.4.6, attributeValue"NETA")), RelativeDistinguis

 hedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, attri

 buteValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsserti

 on (attributeType 1.3.18.0.0.2294, attributeValue "NETA.APPL1")))), ac

 tionReply (actionType 1.3.18.0.0.2222, actionReplyInfo ((vertex1 (obje

 ct (distinguishedName (RelativeDistinguishedName (AttributeValueAssert

 ion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDi

 stinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.203

 2, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValu

 eAssertion (attributeType 1.3.18.0.0.1984, attributeValue "NETA.APPL1"

)))), class 1.3.18.0.0.1829, states 01000100000000, info (Attribute (a

 ttributeId 1.3.18.0.0.2194, attributeValue (dependents (and (Dependent

 s (item (distinguishedName (RelativeDistinguishedName (AttributeValueA

 ssertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relat

 iveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.

 0.2032, attributeValue "SSCP1A")), RelativeDistinguishedName (Attribut

 eValueAssertion (attributeType 1.3.18.0.0.2272, attributeValue "APPL.A

 PPL1A"))))), Dependents (item (distinguishedName (RelativeDistinguishe

 dName (AttributeValueAssertion (attributeType 1.3.18.0.2.4.6, attribut

 eValue "NETA")), RelativeDistinguishedName (AttributeValueAssertion (a

 ttributeType 1.3.18.0.0.2032, attributeValue "SSCP1A"))))))))), Attrib

 ute (attributeId 0.0.13.3100.0.7.50, attributeValue "APPL1")))))))))

The following translated initial data shows LU NETA.APPL1 was found in SSCP1A

(agent host), under application program major node APPL1A:

 V1: NETA.SSCP1A.NETA.APPL1(LU)

 V1: LU expansion

Chapter 16. Requesting specific resource data 227

vertex 1 : NETA;SSCP1A;NETA.APPL1

 class : logicalUnit

 states

 Operational State : Enabled

 Usage State : Idle

 Administrative State: Unlocked

 Availability Status : No Status

 Procedural Status : No Status

 Unknown Status : False

 Native Status : Active

 info

 userLabel : APPL1

 dependencies : NETA;SSCP1A;APPL.APPL1A

 NETA.SSCP1A

228 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix A. C language header file (ACYAPHDH)

The following C language header file, ACYAPHDH, contains many declarations

that are needed for compiling a C program that uses the CMIP services API. This

header file is shipped in the AMACLIB data set of the SYS1.MACLIB data set.

/* */ 00050000

/* COPYRIGHT = LICENSED MATERIALS - PROPERTY OF IBM */ 00100000

/* */ 00150000

/* THIS PRODUCT CONTAINS */ 00200000

/* "RESTRICTED MATERIALS OF IBM" */ 00250000

/* */ 00300000

/* 5695-117 (C) COPYRIGHT IBM CORP. 1994 */ 00350000

/* ALL RIGHTS RESERVED. */ 00400000

/* */ 00450000

/* U.S. GOVERNMENT USERS RESTRICTED RIGHTS - */ 00500000

/* USE, DUPLICATION OR DISCLOSURE RESTRICTED */ 00550000

/* BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP. */ 00600000

/* */ 00650000

/* SEE COPYRIGHT INSTRUCTIONS. */ 00700000

/* */ 00750000

/* $MAC(ACYAPHDH),COMP(CMIP),PROD(VTAM): CMIP MIB API declarations */ 00800000

/* */ 00850000

/* FLAG REASON RELEASE DATE ORIGIN FLAG DESCRIPTORS */ 00900000

/* ---- -------- ------- ------ ------ ---------------------------- */ 00950000

/* $L0= FYJDR002 VTAGENT 940523 647877: VTAM Agent */ 01000000

/* $Y1= P115000 VTAGENT 940801 792173: Add Address Fields to end */ 01050000

/* of Vector */ 01100000

/* $Y2= P115922 VTAGENT 940810 647877: Fix declaration of */ 01150000

/* MIBSendDeleteRegistration */ 01200000

/* */ 01250000

 01300000

#ifndef ACYAPHDH_INCLUDED /* Only process these once. */ 01350000

 01400000

#define ACYAPHDH_INCLUDED /* Signify that these have been 01450000

 processed. */ 01500000

 01550000

#include /* Obtain definition of time_t for 01600000

 APIhdr. */ 01650000

 01700000

/***/ 01750000

/* The following constant is the maximum number of invoke ids which */ 01800000

/* may concurrently active on the same connection. It is the */ 01850000

/* maximum allowed value for the max outstanding invoke ids */ 01900000

/* parameter on MIBConnect. */ 01950000

/***/ 02000000

 02050000

#define INVOKE_ID_MAX 0x00010000 02100000

 02150000

/***/ 02200000

/* The following constant is the length in bytes of the longest */ 02250000

/* possible local identifier. */ 02300000

/***/ 02350000

 02400000

#define LOCAL_ID_MAX 8 02450000

 02500000

/***/ 02550000

/* The following constants represent the settings of the msg_type */ 02600000

/* field in the APIhdr structure. */ 02650000

/***/ 02700000

 02750000

© Copyright IBM Corp. 1995, 2005 229

#define API_MSG 0 02800000

#define API_REG_ACCEPT 1 02850000

#define API_SVC_COMPLETE 2 02900000

#define API_SVC_ERROR 3 02950000

#define API_TERMINATE_INSTANCE 4 03000000

 03050000

/***/ 03100000

/* The following constants represent the settings of the origin */ 03150000

/* field in the APIhdr structure. */ 03200000

/***/ 03250000

 03300000

#define ORIGIN_OBJ 0 /* The request which initiated 03350000

 this message was generated by 03400000

 the object which received this 03450000

 message. */ 03500000

 03550000

#define ORIGIN_REMOTE 1 /* The request which initiated 03600000

 this message was generated by 03650000

 an object other than the one 03700000

 which received this message 03750000

 (unless the object generated a 03800000

 request to itself). */ 03850000

 03900000

/***/ 03950000

/* The following constants are used for the connection options */ 04000000

/* parameter of MIBConnect. */ 04050000

/***/ 04100000

 04150000

#define NO_CONNECT_OPTIONS 0 04200000

#define SHORT_NAMES 2 04250000

 04300000

/***/ 04350000

/* The following constants represent valid capabilities bits which */ 04400000

/* can be specified in the capabilities parameter of MBReg(). */ 04450000

/***/ 04500000

 04550000

#define NO_CAPABILITIES 0 /* no special capabilities */ 04600000

 04650000

#define SUBTREE_MANAGER 1 /* The object being registered is 04700000

 a subtree manager. */ 04750000

 04800000

/***/ 04850000

/* The following constant is used as the value of the name type */ 04900000

/* parameter of MIBSendRegister. */ 04950000

/***/ 05000000

 05050000

#define DN_OF_INSTANCE 0 05100000

 05150000

/***/ 05200000

/* The following constants represent values for the dest type */ 05250000

/* parameter of MIBSendCmipRequest. */ 05300000

/***/ 05350000

 05400000

#define DS_NOT_PROVIDED 0 05450000

#define DS_FULL_DN 1 05500000

#define DS_ASSOC_HANDLE 2 05550000

#define DS_AE_TITLE 3 05600000

 05650000

/***/ 05700000

/* Structures */ 05750000

/***/ 05800000

 05850000

typedef struct APIhdr_tag 05900000

{ 05950000

 unsigned char msg_type; 06000000

 unsigned char api_version; 06050000

 unsigned char origin; 06100000

230 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

unsigned char RESERVED1; /* Applications must not use or 06150000

 depend on the value of this 06200000

 field in any way. */ 06250000

 unsigned int invokeId; 06300000

 unsigned int connectId; 06350000

 unsigned int numLocalIds; 06400000

 time_t timestamp; 06450000

 unsigned short resultCode; 06500000

 unsigned char RESERVED2??(2??); /* Applications must not use or 06550000

 depend on the value of this 06600000

 field in any way. */ 06650000

 unsigned int RESERVED3; /* Applications must not use or 06700000

 depend on the value of this 06750000

 field in any way. */ 06800000

 unsigned char localIds??(8??); 06850000

} APIhdr; 06900000

 06950000

/***/ 07000000

/* The following structures are used by CMIP applications using */ 07050000

/* Data Spaces: */ 07100000

/* (1) DataSpaceVector Format (ISTRIV10_t) */ 07150000

/* (2) Interface Control Block (ISTNMICB_t) */ 07200000

/***/ 07250000

 07300000

typedef struct ISTRIV10_tag 07350000

{ 07400000

 char RIV10LEN; /* VECTOR LENGTH */ 07450000

 char RIV10KEY; /* VECTOR KEY */ 07500000

 char RIV10DSN??(8??); /* DATA SPACE NAME */ 07550000

 char RIV10NMI??(4??); /* ADDRESS OF ISTNMICB IN DATA 07600000

 SPACE STORAGE */ 07650000

 char RIV10STK??(8??); /* STOKEN OF DATA SPACE */ 07700000

 char reserved1??(4??); /* reserved - not available */ 07750000

 char RIV10CDQ??(4??); /* Address of Dequeue Routine */ 07800000

 char RIV10CRL??(4??); /* Address of Release Routine */ 07850000

 char reserved2??(8??); /* reserved */ 07900000

} ISTRIV10_t; 07950000

 08000000

typedef struct ISTNMICB_tag 08050000

{ 08100000

 char reserved1??(4??); /* reserved - not available */ 08150000

 void *NMIPDCDQ; /* Address of Dequeue Routine */ 08200000

 void *NMIPDCRL; /* Address of Release Routine */ 08250000

} ISTNMICB_t; 08300000

 08350000

/***/ 08400000

/* The following macro can be used to calculate the size of a given */ 08450000

/* APIhdr (including any local identifiers present). */ 08500000

/***/ 08550000

 08600000

#define APIhdrSize(x,size) \ 08650000

 ((char *)&((x).localIds) - (char *)&(x) + \ 08700000

 (size) * (x).numLocalIds) 08750000

 08800000

/***/ 08850000

/* The following type definitions are provided so that the C */ 08900000

/* compiler can perform type checking on the MIB API calls. The */ 08950000

/* address of each MIB API routine should be given one of the */ 09000000

/* following types. */ 09050000

/***/ 09100000

 09150000

typedef int MIBConnect_t(09200000

 unsigned int, /* API level */ 09250000

 int *, /* link id */ 09300000

 unsigned int, /* max outstanding invoke 09350000

 ids */ 09400000

 const char *, /* application name */ 09450000

Appendix A. C language header file (ACYAPHDH) 231

void *, /* TPEND exit */ 09500000

 void *, /* read queue exit */ 09550000

 unsigned int *, /* SMAE name buffer size */ 09600000

 char *, /* SMAE name buffer */ 09650000

 unsigned int *, /* System Object name buffer 09700000

 size */ 09750000

 char *, /* System Object name */ 09800000

 int, /* user data field */ 09850000

 unsigned int *, /* error flag */ 09900000

 char **, /* VTAM release level */ 09950000

 const char *, /* password */ 10000000

 unsigned int, /* length of DS vector */ 10050000

 ISTRIV10_t *, /* DS vector */ 10100000

 unsigned int, /* local identifier length */ 10150000

 unsigned int); /* connection options */ 10200000

 10250000

#pragma linkage(MIBConnect_t,OS) 10300000

 10350000

typedef int MIBDisconnect_t(10400000

 int, /* link id */ 10450000

 unsigned int *); /* return error flag */ 10500000

 10550000

#pragma linkage(MIBDisconnect_t,OS) 10600000

 10650000

typedef int MIBSendRegister_t(10700000

 int, /* link id */ 10750000

 unsigned int *, /* returned invoke id */ 10800000

 const void *, /* local id */ 10850000

 const char *, /* object class */ 10900000

 int, /* name type */ 10950000

 const char *, /* distinguished name */ 11000000

 const char *, /* name binding oid */ 11050000

 unsigned int, /* capability flags */ 11100000

 unsigned int, /* allomorphs count */ 11150000

 char **, /* allomorphs array */ 11200000

 unsigned int, /* create handlers count */ 11250000

 char **); /* create handlers array */ 11300000

 11350000

#pragma linkage(MIBSendRegister_t,OS) 11400000

 11450000

typedef int MIBSendDeleteRegistration_t(11500000

 int, /* link id */ 11550000

 unsigned int *, /* returned invoke id */ 11600000

 const void *, /* local identifier */ 11650000

 const char *); /* DN @Y2C*/ 11700000

 11750000

#pragma linkage(MIBSendDeleteRegistration_t,OS) 11800000

 11850000

typedef int MIBSendRequest_t(11900000

 int, /* link id */ 11950000

 unsigned int *, /* returned invoke id */ 12000000

 const void *, /* local identifier */ 12050000

 const char *); /* message */ 12100000

 12150000

#pragma linkage(MIBSendRequest_t,OS) 12200000

 12250000

typedef int MIBSendResponse_t(12300000

 int, /* link id */ 12350000

 unsigned int, /* invoke id */ 12400000

 const void *, /* local identifier */ 12450000

 const char *, /* source */ 12500000

 const char *, /* dest association handle */ 12550000

 const char *); /* message */ 12600000

 12650000

#pragma linkage(MIBSendResponse_t,OS) 12700000

 12750000

typedef int MIBSendCmipRequest_t(12800000

232 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

int, /* link id */ 12850000

 unsigned int, /* argument type */ 12900000

 const char *, /* argument */ 12950000

 const void *, /* local identifier */ 13000000

 const char *, /* source */ 13050000

 unsigned int, /* type of destination */ 13100000

 const char *, /* destination */ 13150000

 unsigned int *); /* returned invoke id */ 13200000

 13250000

#pragma linkage(MIBSendCmipRequest_t,OS) 13300000

 13350000

typedef int MIBSendCmipResponse_t(13400000

 int, /* link id */ 13450000

 unsigned int, /* invoke id */ 13500000

 unsigned int, /* last in chain? */ 13550000

 unsigned int, /* success? */ 13600000

 unsigned int, /* argument type */ 13650000

 const char *, /* argument */ 13700000

 const void *, /* local identifier */ 13750000

 const char *, /* source */ 13800000

 const char *, /* dest association handle */ 13850000

 unsigned int *); /* returned invoke id */ 13900000

 13950000

#pragma linkage(MIBSendCmipResponse_t,OS) 14000000

 14050000

/***/ 14100000

/* The following constants are for the synchronous return codes */ 14150000

/* which may be received from one of the MIB API routines or via */ 14200000

/* an API_SVC_ERROR message from CMIP Services. */ 14250000

/***/ 14300000

 14350000

#define MB_ERR_ALLOC 7 14400000

#define MB_ERR_MAX_OUTSTANDING 932 14450000

 14650000

/***/ 14700000

/* The following constants are for the synchronous return codes */ 14750000

/* which may be received only from one of the MIB API routines. */ 14800000

/***/ 14850000

 14900000

#define MB_ERR_INVALID_LINK_ID 918 14946800

#define MB_ERR_NOT_REGISTERED 920 14993600

#define MB_ERR_CONNECT 945 15040400

#define MB_WARN_DATA_SPACE_FULL 1000 15087200

#define MB_WARN_EXIT_FAILURE 1001 15134000

#define MB_DATA_ON_DATA_SPACE 1002 15180800

#define MB_ERR_INVALID_ENVIRONMENT 1003 15227600

#define MB_ERR_INVALID_ARGUMENT 1004 15274400

#define MB_ERR_INVALID_ARGUMENT_TYPE 1005 15321200

#define MB_ERR_INVALID_ASSOC_HANDLE 1006 15368000

#define MB_ERR_INVALID_SMAE_NAME 1007 15414800

#define MB_ERR_CMIP_SERVICES_INACTIVE 1008 15461600

#define MB_ERR_INVALID_DS_VECTOR 1009 15508400

#define MB_ERR_INVALID_DEST_TYPE 1010 15555200

#define MB_ERR_INVALID_DIST_NAME 1011 15602000

#define MB_ERR_INVALID_MAX_INVOKE_IDS 1012 15648800

#define MB_ERR_INVALID_API_LEVEL 1013 15695600

#define MB_ERR_INVALID_APPL_NAME 1014 15742400

#define MB_ERR_INVALID_DS_VECTOR_SIZE 1015 15789200

#define MB_ERR_INVALID_SMAE_NAME_SIZE 1016 15836000

#define MB_ERR_INVALID_INVOKE_ID 1017 15882800

#define MB_ERR_MIBDISCONNECT 1018 15929600

#define MB_ERR_INVALID_MSG 1019 15976400

#define MB_ERR_INVALID_OBJECT_CLASS 1020 16023200

#define MB_ERR_INVALID_READ_QUEUE_EXIT 1021 16070000

#define MB_ERR_INVALID_SYSTEM_NAME_SIZE 1022 16116800

#define MB_ERR_INVALID_LOCAL_ID_SIZE 1023 16163600

#define MB_ERR_TRANSMIT 1024 16210400

Appendix A. C language header file (ACYAPHDH) 233

#define MB_ERR_VTAM_INACTIVE 1025 16257200

#define MB_ERR_INVALID_USER_DATA 1026 16304000

#define MB_ERR_INVALID_ERROR_FLAG 1027 16350800

#define MB_ERR_INVALID_RELEASE_LEVEL 1028 16397600

#define MB_ERR_INVALID_PASSWORD 1029 16444400

#define MB_ERR_INVALID_CAPABILITY_FLAGS 1030 16491200

#define MB_ERR_INVALID_TPEND_EXIT 1031 16538000

#define MB_ERR_INVALID_LAST_IN_CHAIN_FLAG 1032 16584800

#define MB_ERR_INVALID_SUCCESS_FLAG 1033 16631600

#define MB_ERR_INVALID_SYSTEM_NAME 1034 16678400

#define MB_ERR_INVALID_CONNECT_OPTIONS 1035 16725200

#define MB_ERR_INVALID_NAME_TYPE 1036 16772000

#define MB_ERR_INVALID_NAME_BINDING 1037 16818800

#define MB_ERR_INVALID_ALLOMORPHS_COUNT 1038 16865600

#define MB_ERR_INVALID_ALLOMORPHS_ARRAY 1039 16912400

#define MB_ERR_INVALID_CREATE_HANDLERS_COUNT 1040 16959200

#define MB_ERR_INVALID_CREATE_HANDLERS_ARRAY 1041 17006000

#define MB_ERR_INVALID_LOCAL_ID 1042 17052800

#define MB_ERR_INVALID_DEST 1043 17099600

 17150000

/***/ 17200000

/* The following return codes are returned from CMIP Services only */ 17250000

/* via API_SVC_ERROR messages. */ 17300000

/***/ 17350000

 17400000

#define PROGRAM_CHECK 8 17433300

 17466600

#define AUTHENTICATION_FAILED 250 17499900

#define AUTHENTICATION_INFO_MISSING 251 17533200

#define AUTHENTICATION_MECH_UNKNOWN 252 17566500

 17600000

#define BER_BAD_TYPE 300 17650000

#define BER_BAD_MODULE 301 17700000

#define BER_NULL_TYPE 302 17750000

#define BER_NULL_MODULE 303 17800000

#define BER_NULL_STRING 304 17850000

#define BER_NULL_STRUCT 305 17900000

#define BER_BAD_METATABLE 306 17950000

#define BER_UNKNOWN_TYPE 307 18000000

#define BER_UNKNOWN_MEMBER 308 18050000

#define BER_UNKNOWN_ALTERNATIVE 309 18100000

#define BER_NO_END_PARENTHESIS 310 18150000

#define BER_NO_START_PARENTHESIS 311 18200000

#define BER_NO_MORE_STRING 312 18250000

#define BER_PARSE_ERROR 313 18300000

#define BER_IMPLICIT_CHOICE 314 18350000

#define BER_CANNOT_RESOLVE 315 18400000

#define BER_NEED_LABEL 316 18450000

#define BER_MISSING_MEMBER 317 18500000

#define BER_NO_PARENT 319 18550000

#define BER_BAD_DN_PARSE 320 18600000

#define BER_BAD_RESOLUTION_NODE 321 18650000

#define BER_MISSING_RESOLUTION_NODE 322 18700000

#define BER_LABEL_MISMATCH 323 18750000

#define BER_NOT_BOOLEAN 325 18800000

#define BER_NOT_INTEGER 326 18850000

#define BER_NOT_REAL 327 18900000

#define BER_NOT_NULL 328 18950000

#define BER_NOT_BIT_STRING 329 19000000

#define BER_NOT_HEX_STRING 330 19050000

#define BER_BAD_HEX_STRING 331 19100000

#define BER_NOT_OI 332 19150000

#define BER_BAD_TIME 333 19200000

#define BER_BAD_ENUMERATED 334 19250000

#define BER_BAD_PRINTABLE_STRING 335 19300000

#define BER_BAD_NUMERIC_STRING 336 19350000

#define BER_BAD_VISIBLE_STRING 337 19400000

234 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

#define BER_BAD_GRAPHIC_STRING 338 19450000

#define BER_BAD_GENERAL_STRING 339 19500000

#define BER_BAD_IA5_STRING 340 19550000

#define BER_DUPLICATE_MEMBER 341 19600000

#define BER_CANT_DO_REAL 342 19650000

#define BER_NOT_STRAIGHT_BER 343 19700000

#define BER_UNRESOLVED_EXTERNAL 344 19750000

#define BER_STILL_MORE_STRING 345 19800000

#define BER_DUP_MODULE 347 19850000

#define BER_UNRESOLVED_MODULE_REF 348 19900000

#define BER_UNRESOLVED_REF 349 19950000

#define BER_FAILED_SUBTYPE 354 20000000

#define BER_BAD_CONSTRUCTED 356 20050000

#define BER_BAD_PRIMITIVE 357 20100000

#define BER_BAD_INITIAL_OCTET 358 20150000

#define BER_BAD_BOOLEAN 359 20200000

#define BER_BAD_OI 360 20250000

#define BER_BAD_NULL 361 20300000

#define BER_BAD_PARAMETERS 363 20400000

#define BER_EMPTY_BIT_STRING 364 20450000

 20800000

#define RDN_SEP_AT_BEGIN_OF_DN 375 20847600

#define AVA_SEP_AT_BEGIN_OF_DN 376 20895200

#define SPACE_AT_BEGIN_OF_DN 377 20942800

#define INVALID_CHAR_AT_BEGIN_OF_DN 378 20990400

#define RDN_SEP_AT_BEGIN_OF_RDN 379 21038000

#define AVA_SEP_AT_BEGIN_OF_RDN 380 21085600

#define SPACE_AT_BEGIN_OF_RDN 381 21133200

#define INVALID_CHAR_AT_BEGIN_OF_RDN 382 21180800

#define INVALID_ALPHA_IN_INTEGER_VALUE 383 21228400

#define INVALID_SPACE_IN_INTEGER_VALUE 384 21276000

#define INVALID_CHAR_IN_INTEGER_VALUE 385 21323600

#define INVALID_SPACE_IN_OI_VALUE 386 21371200

#define INVALID_CHAR_IN_OI_VALUE 387 21418800

#define INVALID_SPACE_IN_SYMBOLIC_VALUE 388 21466400

#define INVALID_CHAR_IN_SYMBOLIC_VALUE 389 21514000

#define INVALID_CHAR_IN_ATTR_VALUE 390 21561600

#define INVALID_SPACE_IN_ATTR_VALUE 391 21609200

#define PREMATURE_END_OF_DN 392 21656800

#define INVALID_SPACE_AT_END_OF_RDN 393 21704400

#define BOTH_QUOTE_TYPES_USED 394 21752000

 21800000

#define REPL_ERR_INVLD_VERBCODE 400 21850000

#define REPL_ERR_MISSING_ASN1_TREE 401 21900000

#define REPL_ERR_OBJCLASS_MISSING 402 21950000

#define REPL_ERR_OBJCLASS_INVALID 403 22000000

#define REPL_ERR_OBJINST_MISSING 404 22050000

#define REPL_ERR_OBJINST_INVALID 405 22100000

#define REPL_ERR_DUPLICATE_OBJINST 406 22150000

#define REPL_ERR_NO_SUCH_OBJINST 407 22200000

#define REPL_ERR_MOI_OC_MISMATCH 408 22250000

#define REPL_ERR_NAME_CREATE_FAILED 409 22300000

#define REPL_ERR_GDMO_FILE_BAD_VERS 410 22350000

#define REPL_ERR_NOTHING_TO_DELETE 411 22400000

#define REPL_WRN_OBJCLASS 412 22450000

#define REPL_ERR_ALREADY_AN_STM 413 22500000

#define REPL_ERR_INVLD_STM_CHILD 414 22550000

#define REPL_ERR_SCOPES_TO_NOTHING 415 22600000

#define REPL_ERR_INVALID_SCOPE 416 22650000

#define REPL_ERR_COMMITDN_NOTIN_LIST 417 22700000

#define REPL_ERR_NO_ONE_2_SEND_CRT_2 419 22750000

#define REPL_ERR_NOONE_2_SEND_EVNT_2 420 22800000

#define REPL_ERR_ALREADY_EVNT_HNDLR 421 22850000

#define REPL_ERR_NAMEBIND_INVALID 422 22900000

#define REPL_ERR_CRT_FAIL_NB 424 22950000

#define REPL_ERR_CRT_FAIL_NO_NB 425 23000000

#define REPL_ERR_DLT_FAIL_CONTOBJS 426 23050000

Appendix A. C language header file (ACYAPHDH) 235

#define REPL_ERR_DLT_FAIL_TO_DCO 427 23100000

#define REPL_ERR_DLT_FAIL_NB 428 23150000

#define REPL_ERR_NO_LOCALDN 429 23200000

#define REPL_ERR_DUPLICATE_LDNH 430 23250000

#define REPL_REG_CREATED 431 23300000

#define REPL_CRT_COMPLETED 432 23350000

#define REPL_REG_COMPLETED 433 23400000

#define REPL_REG_SUSPENDED 434 23450000

#define REPL_ERR_ATTRTYPE_MISMATCH 435 23500000

#define REPL_ERR_CANNOT_CHANGE_NB 436 23550000

#define REPL_ERR_BULK_HAD_PROBLEMS 438 23600000

#define REPL_ERR_NB_DISALLOWS_NEWOC 439 23650000

#define REPL_ERR_SYNC_NOT_SUPPORTED 440 23700000

 23800000

#define CRC_ERR_INVLD_VERBCODE 500 23836300

#define CRC_ERR_INVLD_SESSHAND 501 23872600

#define CRC_ERR_INVLD_INVOKEID 502 23908900

#define CRC_ERR_DPLCT_INVOKEID 503 23945200

#define CRC_ERR_INVLD_LINKEDID 504 23981500

#define CRC_ERR_UNABLE_TO_BUILD_MSG 505 24017800

#define CRC_ERR_INVLD_ROERRJ_RCVD 506 24054100

#define CRC_ERR_INVLD_CANCELGET 507 24090400

#define CRC_ERR_INVLD_INVOKEID_ON_CANCELGET 508 24126700

#define CRC_DELETE_RORJ_RECEIVED 509 24163000

 24200000

#define SSERR_STATE_INVALID 550 24250000

#define SSERR_SPDU_INVALID 551 24300000

#define SSERR_MISSING_PI 552 24350000

#define SSERR_MISSING_UI 553 24400000

#define SSERR_VERB_INVALID 554 24450000

#define SSERR_INVALID_SUR 556 24500000

#define SSERR_USERDATA_SIZE 557 24550000

#define SSERR_TDISC_UNSPECIFIED 558 24600000

#define SSERR_TDISC_CONGESTED 559 24650000

#define SSERR_TDISC_UNATTACHED 560 24700000

#define SSERR_TDISC_ADDRESS 561 24750000

#define SSERR_VERSION 562 24800000

#define SSERR_PARTNER_ABORT 563 24850000

#define SSERR_ENCLOSURE_ITEM 564 24900000

 25000000

#define MD_ERR_BAD_MDSMU 568 25050000

#define MD_ERR_SNACR_BEING_SENT 573 25100000

#define MD_ERR_SNACR_RECEIVED 574 25150000

 25200000

#define SSERR_GIVE_TOKEN_NO_DATA 578 25250000

#define SSERR_DUPLICATE 581 25300000

 25750000

#define ACF_EVENT_LOOP 802 25789300

#define ACF_INVALID_ASSOC_ID 803 25828600

#define ACF_INVALID_PARAMETERS 804 25867900

#define ACF_INVALID_USER_ID 806 25907200

#define ACF_RSP_BUILD_SEND_FAILED 807 25946500

#define ACF_ERR_KILL_LOC_ASSOC 808 25985800

#define ACF_UNSUPPORTED_VERB 809 26025100

#define ACF_INVALID_DEST_FORMAT 810 26064400

#define ACF_BAD_AE_TITLE_FORMAT 812 26103700

#define ACF_CANNOT_FIND_INST 814 26143000

#define ACF_NO_DESTINATION 815 26182300

#define ACF_NO_ASSOC_TEMP 817 26221600

#define ACF_MSG_REJECTED 818 26260900

#define ACF_EMPTY_DEF_LIST_RESULT 819 26300200

#define ACF_QUEUED_MESSAGE 823 26339500

#define ACF_ASSOC_ID_WRAP 824 26378800

#define ACF_AUTO_ASSOC_TEARDOWN_TERM 825 26418100

#define ACF_TOO_MANY_LOCAL_ASSOCS 826 26457400

#define ACF_DUPLICATE_AE 827 26496700

#define ACF_REMOTE_AE 828 26536000

236 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

#define ACF_INVALID_STATE_TO_RELEASE 829 26575300

#define ACF_INVALID_AE 830 26614600

#define ACF_BAD_P_MODE 831 26653900

#define ACF_BAD_P_PROTOCOL_VERSION 832 26693200

#define ACF_BAD_CMIP_VERSION 833 26732500

#define ACF_BAD_APPL_CONTEXT 834 26771800

#define ACF_NO_APPL_CONTEXT 835 26811100

#define ACF_NO_APPL_INFO 836 26850400

#define ACF_BAD_DEF_LIST 837 26889700

#define ACF_WRONG_AE_TITLE 838 26929000

#define ACF_ALREADY_CONFIRMED 839 26968300

#define ACF_NO_AE_QUALIFIER 840 27007600

 27050000

#define MB_ERR_PROCFAIL_NOT_OPTIONAL 900 27100000

#define MB_ERR_COMPXLIM_NOT_OPTIONAL 901 27150000

#define MB_ERR_INVALID_TYPENAME 903 27200000

#define MB_ERR_NOT_CONNECTED 904 27250000

#define MB_ERR_WRONG_LENGTH 906 27300000

#define MB_ERR_INVALID_API_TAG 907 27350000

#define MB_ERR_MISSING_API_TAG 909 27400000

#define MB_ERR_UNSUPPORTED_MSG_TYPE 913 27450000

#define MB_ERR_DELETE_PROTOCOL_ERROR 914 27500000

#define MB_ERR_DUPLICATE_TAGS 915 27550000

#define MB_ERR_CONNECTION_CONFLICT 916 27600000

#define MB_ERR_HEADER_NOT_PRESENT 917 27650000

#define MB_ERR_INVALID_STATE 919 27700000

#define MB_ERR_CMIP_ERR_RESP_ILLEGAL 921 27750000

#define MB_ERR_CMIP_ERR_RESP_STKCHK 922 27800000

#define MB_TRY_XMIT_RESP 923 27850000

#define MB_ERR_LOST_CONNECTION 925 27900000

#define MB_ERR_INVALID_NUMLOCALIDS 926 27950000

#define MB_ERR_MISSING_LOCAL_ID 928 28000000

#define MB_ERR_LOCAL_ID_ALREADY_REGISTERED 929 28050000

#define MB_ERR_INVALID_MSG_TYPE 930 28150000

#define MB_ERR_SOURCE_NOT_IN_SUBTREE 931 28200000

#define MB_ERR_CMIP_ERR_NOT_STM 933 28250000

#define MB_ERR_NOT_SUBTREE_MGR 934 28300000

#define MB_ERR_DIDNT_USE_AMPER_IID 935 28350000

#define MB_ERR_CMIP_ERR_NOTASROIV 936 28400000

#define MB_ERR_INVALID_MSG_FORMAT 937 28450000

#define MB_ERR_EMPTY_ROIV_INVALID 938 28500000

#define MB_ERR_INVALID_RESP 939 28550000

#define MB_ERR_CANCELGET_RESP_INVALID 941 28600000

 28650000

#define HDR_SYNTAX_ERROR 952 28700000

#define INVALID_HDR_DEST_TYPE 953 28750000

#define INVALID_HDR_SRC_TYPE 954 28800000

#define UNRECOGNIZED_HDR_LABEL 955 28850000

#define KEY_IS_NULL 956 28900000

#define KEY_NOT_FOUND 957 28950000

#define MIB_VAR_NOT_LOADED 958 29000000

 29100000

#define LABV_END_QUOTE_NOT_FOUND 961 29150000

#define LABV_NULL_VALUE 962 29200000

#define LABV_INVALID_CHAR_IN_VALUE 963 29250000

#define LABV_INVALID_GROUP_DELIMITER 964 29300000

#define LABV_EMPTY_STRING 965 29350000

 29400000

#endif /* ifndef ACYAPHDH_INCLUDED */ 29450000

Appendix A. C language header file (ACYAPHDH) 237

238 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix B. ASN.1 specification of the basic CMIP strings

The following ASN.1 syntax is contained in the CMIP-1 ASN.1 module of the

ACYIDCMS member of the SYS1.SISTASN1 data set.

--

-- COPYRIGHT = LICENSED MATERIALS - PROPERTY OF IBM

--

-- THIS PRODUCT CONTAINS

-- "RESTRICTED MATERIALS OF IBM"

--

-- 5695-117 (C) COPYRIGHT IBM CORP. 1994

-- ALL RIGHTS RESERVED.

--

-- U.S. GOVERNMENT USERS RESTRICTED RIGHTS -

-- USE, DUPLICATION OR DISCLOSURE RESTRICTED

-- BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.

--

-- SEE COPYRIGHT INSTRUCTIONS.

--

-- Modules: CMIP-1 SMASE-A_ASSOCIATE-Information CMIP-A-Associate-Information CMIP-A-Abort-Information

-- Based on standard: CMIP

-- CMIP - based on ISO/IEC 9596-1 dated 24 November 1990

-- Modules: CMIP-A-ASSOCIATE-Information, CMIP-A-ABORT-Information, CMIP-1

-- SMO - based on ISO/IEC IS 10040 dated August 1991

-- Module: SMASE-A-ASSOCIATE-Information

--

-- __

-- | |

-- | This copy of the CMIP ASN.1 definitions has been adapted for use with |

-- | cmipWorks. It eliminates the CHOICE from the definitions of AttributeId, |

-- | ActionTypeId and EventTypeId. The resulting syntax will encode and flow |

-- | IDENTICALLY to the original productions. |

-- | |

-- | This change was made because: |

-- | It simplifies the processing of all messages - eliminating the useless |

-- | CHOICE that would need to be processed on every message. |

-- | It simplifies the interface used by applications to avoid writing |

-- | (globalForm 1.2.3) for every attribute, action and event. |

-- | It aligns with the actual use of the fields since they cannot use the |

-- | localForm unless the application context specifically allocates values |

-- | for it and assigns the correspondence to data types. |

-- | |

-- |__|

--

--

--

--

-- Differences from standard:

-- - Modify the definition of access control information to allow

-- the correct thing to be parsed. Replace the OCTET STRING with

-- a cobbled-up External.

-- - Various comments have been added for explanations, and for use by tools

-- - Module SMASE-A-ASSOCIATE-Information has an errant comma in the standard after agentRoleFunctionalUnit

-- causing the module not to parse. The problem has been corrected in this version

-- - CMIP-A-ASSOCIATE-Information

-- - None

-- - CMIP-1:

-- - IMPORTS and EXPORTS do no match standard

-- - Remote-Operations-APDUs is loosely translated as part of CMIP-1. The differences from the

-- RO standards are that the ROIV, RORS, ROER, and RORJ definitions are tagged and IMPLICIT;

-- SEQUENCE in RORSapdu has a label

-- macros are not used *** RO also in module Remote-Operations-APDUs ***

-- - ActionArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation

-- - ActionTypeId is defined as a CHOICE in the standards - here it is only an OI (see in line

-- comments

-- - AttributeId is defined as a CHOICE in the standards - here it is only an OI

-- - DeleteArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation

-- - EventTypeId is defined as a CHOICE in the standards - here it is only an OI

-- - GetArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation

-- - Notification added to support allomorphic Notifications (see in line comments)

-- - ObjectClass is defined as a CHOICE in the standards - here it is only an OI

-- - basicScope label put on first choice of Scope

-- - SetArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation

--

SMASE-A-ASSOCIATE-Information

 {joint-iso-ccitt ms(9) smo(0) asn1Modules(2) negotiationDefinitions(0) version1(1)}

DEFINITIONS ::= BEGIN

-- Additional syntax to support ACSE

© Copyright IBM Corp. 1995, 2005 239

-- CMIP functional units

-- CMIP user info defined in SMO

-- Abstract syntax name for a SMASE-A-Associate-Information.SMASEUserData is

-- Joint-iso-ccitt 9 0 1 1

SMASEUserData ::= SEQUENCE

 {smfuPackages SET OF FunctionalUnitPackage OPTIONAL,

 -- shall be present on request/indication if SMFU

 -- negotiation is proposed and on response/confirm if it

 -- is accepted, otherwise it shall be omitted

 reason Reason OPTIONAL,

 -- may only be present on the response/confirm.

 -- When SMFU negotiation fails

 -- results in a reduction of proposed SMFUs

 -- or the association request is rejected

 -- this parameter may carry a reason for this

 systemsManagementUserInformation GraphicString OPTIONAL

 -- a text bucket for implementations to use to distinguish

 -- between different implementation environments.

 -- not subject to conformance test.

 }

Reason ::= INTEGER

 {smfusNotSupported (0),

 -- one or more of the proposed SMFUS is not supported

 smfuCombinationNotSupported (1),

 -- the individual SMFUS are supported, but not in the

 -- proposed combination on a single association

 smfusRequiredNotAvailable (2),

 -- one or more required SMFUs have been negotiated away

 smfuNegotiationRefused (3)

 -- responder refuses to negotiate SMFUs without saying why

 }

FunctionalUnitPackage ::= SEQUENCE

 {functionUnitPackageId FunctionalUnitPackageId,

 managerRoleFunctionalUnit [0] IMPLICIT BIT STRING DEFAULT {},

 -- if not present implies role not supported for this functional unit package

 agentRoleFunctionalUnit [1] IMPLICIT BIT STRING DEFAULT {}

 -- if not present implies role not supported for this functional unit package

 }

FunctionalUnitPackageId ::= OBJECT IDENTIFIER

-- the values for the functionalUnitPackageId are

-- joint-iso-ccitt 9 2 X 1 where x is the defined by the standard (likely equal to the 10164-x)

-- so far, this is the case.

-- Request

-- (smfuPackages ((2.9.2.1.1,managerRoleFunctionalUnit 1111, agentRoleFunctionalUnit 1111),

-- (2.9.2.2.1, managerRoleFunctionalUnit 1, agentRoleFunctionalUnit 1),

-- (2.9.2.3.1, managerRoleFunctionalUnit 1, agentRoleFunctionalUnit 1),

-- (2.9.2.4.1, managerRoleFunctionalUnit 1, agentRoleFunctionalUnit 1),

-- (2.9.2.5.1, managerRoleFunctionalUnit 11, agentRoleFunctionalUnit 11),

-- (2.9.2.6.1, managerRoleFunctionalUnit 00, agentRoleFunctionalUnit 00) -- -- NO LOGGING

--)

--)

-- response

-- (smfuPackages ((2.9.2.1.1,managerRoleFunctionalUnit (1111), agentRoleFunctionalUnit ()),

-- (2.9.2.2.1, managerRoleFunctionalUnit (1), agentRoleFunctionalUnit ()),

-- (2.9.2.3.1, managerRoleFunctionalUnit (1), agentRoleFunctionalUnit ()),

-- (2.9.2.4.1, managerRoleFunctionalUnit (1), agentRoleFunctionalUnit ()),

-- (2.9.2.5.1, managerRoleFunctionalUnit (11), agentRoleFunctionalUnit ()),

-- (2.9.2.6.1, managerRoleFunctionalUnit (00), agentRoleFunctionalUnit ()), -- -- NO LOGGING

--),

-- reason 0

--)

END

-- Rose defines its ASE id to be joint-iso-ccitt 4 3

-- BER is joint-iso-ccitt 1 1 for the transfer syntax. this will always be used.

CMIP-A-ASSOCIATE-Information {joint-iso-ccitt ms(9) cmip(1) modules(0)aAssociateUserInfo(1)}

DEFINITIONS ::= BEGIN

--EXPORTS everything

FunctionalUnits::= BIT STRING --+ VL-NAME = CMIS-Functional-Units

 { multipleObjectSelection (0)

 --+ ELEM-NAME = multiple-Object-Selection

 --+ H-ELEM-NAME = "MP_T_FU_MULTIPLE_FUNCTIONAL_UNITS"

 --+ H-ELEM-ID = 4

 ,

 filter (1)

 --+ ELEM-NAME = filter

 --+ H-ELEM-NAME = "MP_T_FU_FILTER"

 --+ H-ELEM-ID = 2

 ,

240 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

multipleReply (2)

 --+ ELEM-NAME = multiple-Reply

 --+ H-ELEM-NAME = "MP_T_FU_MULTIPLE_REPLY"

 --+ H-ELEM-ID = 16

 ,

 extendedService (3)

 --+ ELEM-NAME = extended-Service

 --+ H-ELEM-NAME = "MP_T_FU_EXTENDED_SERVICE"

 --+ H-ELEM-ID = 8

 ,

 cancelGet (4)

 --+ ELEM-NAME = cancel-Get

 --+ H-ELEM-NAME = "MP_T_FU_CANCEL_GET"

 --+ H-ELEM-ID = 1

 }

-- Functional unit i is supported if and only if bit i is one.

-- information carried in user-information parameter of A-ASSOCIATE

CMIPUserInfo::= SEQUENCE { protocolVersion [0] IMPLICIT ProtocolVersion DEFAULT { version1 },

 functionalUnits [1] IMPLICIT FunctionalUnits DEFAULT {},

 accessControl [2] EXTERNAL OPTIONAL,

 userInfo [3] EXTERNAL OPTIONAL }

ProtocolVersion::= BIT STRING { version1 (0),

 version2 (1) }

END

CMIP-A-ABORT-Information {joint-iso-ccitt ms(9) cmip(1) modules(0)aAbortUserInfo(2)}

DEFINITIONS ::= BEGIN

-- information carried in user-information parameter of A-ABORT

CMIPAbortInfo ::= SEQUENCE { abortSource [0] IMPLICIT CMIPAbortSource,

 userInfo [1] EXTERNAL OPTIONAL }

CMIPAbortSource ::= ENUMERATED { cmiseServiceUser (0),

 cmiseServiceProvider (1) }

END

CMIP-1 {joint-iso-ccitt ms(9) cmip(1) modules(0) protocol(3)}

DEFINITIONS ::= BEGIN

-- The IMPORTS statement was removed to allow compilation without ROSE.asn

-- IMPORTS InvokeIDType, Operation, Error

-- FROM Remote-Operations-APDUs ;

-- EXPORTS everything

-- Directory Service definitions

 IMPORTS RDNSequence, DistinguishedName

 FROM InformationFramework {joint-iso-ccitt ds(5) modules(1) informationFramework(1)};

-- EXPORTS DistinguishedName, RDN;

-- added to allow compilation of the CMP file without ROSE

-- and without the rose macros.

InvokeIDType ::= INTEGER

Operation ::= INTEGER

Error ::= INTEGER

-- ADDED to allow extern information for access control

ExternDefault ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {

 direct-reference OBJECT IDENTIFIER OPTIONAL,

 indirect-reference INTEGER OPTIONAL,

 encoding CHOICE {

 single-ASN1-type [0] ANY,

 octet-aligned [1] IMPLICIT OCTET STRING,

 arbitrary [2] IMPLICIT BIT STRING

 }

 }

-- Added to allow the missingAttributeValue error syntax to be resolved

-- The parameter template says SET OF AttributeId - not a very friendly type.

AttributeIds ::= SET OF AttributeId

ROSEapdus ::= CHOICE {

 roiv-apdu [1] IMPLICIT ROIVapdu,

 rors-apdu [2] IMPLICIT RORSapdu,

 roer-apdu [3] IMPLICIT ROERapdu,

 rorj-apdu [4] IMPLICIT RORJapdu

Appendix B. ASN.1 specification of the basic CMIP strings 241

}

ROIVapdu ::= [1] IMPLICIT SEQUENCE

 {invokeID InvokeIDType,

 linked-ID [0] IMPLICIT InvokeIDType OPTIONAL,

 operation-value Operation,

 argument ANY DEFINED BY operation-value --% ANY_TABLE_REF(Operations) %-- OPTIONAL

 }

--% Operations ANY_TABLE ::=

--% {

--% m-EventReport EventReportArgument,

--% m-EventReport-Confirmed EventReportArgument,

--% m-Linked-Reply LinkedReplyArgument,

--% m-Get GetArgument,

--% m-Set SetArgument,

--% m-Set-Confirmed SetArgument,

--% m-Action ActionArgument,

--% m-Action-Confirmed ActionArgument,

--% m-Create CreateArgument,

--% m-Delete DeleteArgument,

--% m-CancelGet InvokeIDType

--% }

m-EventReport Operation ::= 0

m-EventReport-Confirmed Operation ::= 1

m-Linked-Reply Operation ::= 2

m-Get Operation ::= 3

m-Set Operation ::= 4

m-Set-Confirmed Operation ::= 5

m-Action Operation ::= 6

m-Action-Confirmed Operation ::= 7

m-Create Operation ::= 8

m-Delete Operation ::= 9

m-CancelGet Operation ::= 10

RORSapdu ::= [2] IMPLICIT SEQUENCE

 {invokeID InvokeIDType,

 resultOption SEQUENCE

 {operation-value Operation,

 result ANY DEFINED BY operation-value --% ANY_TABLE_REF(Results)

 } OPTIONAL

 }

-- Note that m-CancelGet is not included in the list. This message does not

-- have an associated parameter and should only be responed to with an invokeID

--% Results ANY_TABLE ::=

--% {

--% m-Action-Confirmed ActionResult,

--% m-Create CreateResult,

--% m-Delete DeleteResult,

--% m-EventReport-Confirmed EventReportResult,

--% m-Get GetResult,

--% m-Set-Confirmed SetResult

--% }

ROERapdu ::= [3] IMPLICIT SEQUENCE

 {invokeID InvokeIDType,

 error-value Error,

 parameter ANY DEFINED BY error-value --% ANY_TABLE_REF(Errors) %-- OPTIONAL

 }

-- Note that the errors accessDenied, mistypedOperation and operationCancelled

-- are not included in the following list. These errors do not have information

-- associated with them so the ’parameter’ field should never be present.

--% Errors ANY_TABLE ::=

--% {

--% classInstanceConflict BaseManagedObjectId,

--% complexityLimitation ComplexityLimitation,

--% duplicateManagedObjectInstance ObjectInstance,

--% getListError GetListError,

--% invalidArgumentValue InvalidArgumentValue,

--% invalidAttributeValue Attribute,

--% invalidFilter CMISFilter,

--% invalidObjectInstance ObjectInstance,

--% invalidScope Scope,

--% missingAttributeValue AttributeIds,

--% noSuchAction NoSuchAction,

--% noSuchArgument NoSuchArgument,

--% noSuchAttribute AttributeId,

--% noSuchEventType NoSuchEventType,

--% noSuchInvokeId InvokeIDType,

--% noSuchObjectClass ObjectClass,

--% noSuchObjectInstance ObjectInstance,

--% noSuchReferenceObject ObjectInstance,

--% processingFailure ProcessingFailure,

--% setListError SetListError,

--% syncNotSupported CMISSync

242 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

--% }

accessDenied Error ::= 2

classInstanceConflict Error ::= 19

complexityLimitation Error ::= 20

duplicateManagedObjectInstance Error ::= 11

getListError Error ::= 7

invalidArgumentValue Error ::= 15

invalidAttributeValue Error ::= 6

invalidFilter Error ::= 4

invalidObjectInstance Error ::= 17

invalidOperation Error ::= 24

invalidScope Error ::= 16

missingAttributeValue Error ::= 18

mistypedOperation Error ::= 21

noSuchAction Error ::= 9

noSuchArgument Error ::= 14

noSuchAttribute Error ::= 5

noSuchEventType Error ::= 13

noSuchInvokeId Error ::= 22

noSuchObjectClass Error ::= 0

noSuchObjectInstance Error ::= 1

noSuchReferenceObject Error ::= 12

operationCancelled Error ::= 23

processingFailure Error ::= 10

setListError Error ::= 8

syncNotSupported Error ::= 3

-- Labels have been added to the problem CHOICE to allow it to be correctly processed

RORJapdu ::= [4] IMPLICIT SEQUENCE

 {invokeID CHOICE{InvokeIDType,NULL},

 problem CHOICE

 {generalProblem [0] IMPLICIT GeneralProblem,

 invokeProblem [1] IMPLICIT InvokeProblem,

 returnResultProblem [2] IMPLICIT ReturnResultProblem,

 returnErrorProblem [3] IMPLICIT ReturnErrorProblem

 }

 }

-- The following problems are detected by ROSE-providers:

GeneralProblem ::= INTEGER

 {

 unrecognisedAPDU(0),

 mistypedAPDU(1),

 badlyStructuredAPDU(2)

 }

-- The following problems are detected by ROSE-users:

InvokeProblem ::= INTEGER

 {

 duplicateInvocation(0),

 unrecognisedOperation(1),

 mistypedArgument(2),

 resourceLimitation(3),

 initiatorReleasing(4),

 unrecognizedLinkedID(5),

 linkedResponseUnexpected(6),

 unexpectedChildOperation(7)

 }

ReturnResultProblem ::= INTEGER

 {

 unrecognisedInvocation(0),

 resultResponseUnexpected(1),

 mistypedResponse(2)

 }

ReturnErrorProblem ::= INTEGER

 {

 unrecognisedInvocation(0),

 errorResponseUnexpected(1),

 unrecognisedError(2),

 unexpectedError(3),

 mistypedParameter(4)

 }

AccessControl::= --+ CL-NAME = Access-Control

 --+ CL-TYPE = 5

 --+ H-CL-NAME = "OMP_O_MP_C_ACCESS_CONTROL"

 --+ H-CL-ID = 1001

 ExternDefault -- EXTERNAL in 9596

ActionArgument::= --+ SUPER-CLASS = Action-Argument

 --+ CL-NAME = CMIS-Action-Argument

Appendix B. ASN.1 specification of the basic CMIP strings 243

--+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_ACTION_ARGUMENT"

 --+ H-CL-ID = 2012

 SEQUENCE { baseManagedObjectClass ObjectClass

 --+ ATTR-NAME = base-Managed-Object-Class

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2023

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 baseManagedObjectInstance ObjectInstance

 --+ ATTR-NAME = base-Managed-Object-Instance

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2024

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 1

 ,

 accessControl [5] AccessControl OPTIONAL

 --+ ATTR-NAME = access-Control

 --+ H-ATTR-NAME = "MP_ACCESS_CONTROL"

 --+ H-ATTR-ID = 1001

 --+ ATTR-SYNTAX = 127 "Access-Control"

 --+ VALUE-NUMBER = 0

 ,

 synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

 --+ ATTR-NAME = synchronization

 --+ H-ATTR-NAME = "MP_SYNCHRONIZATION"

 --+ H-ATTR-ID = 2080

 --+ ATTR-SYNTAX = 10 "CMIS-Sync"

 --+ VALUE-NUMBER = 0

 ,

 scope [7] Scope DEFAULT basicScope : baseObject

 --+ ATTR-NAME = scope

 --+ H-ATTR-NAME = "MP_SCOPE"

 --+ H-ATTR-ID = 2070

 --+ ATTR-SYNTAX = 127 "Scope"

 --+ VALUE-NUMBER = 0

 ,

 filter CMISFilter DEFAULT and:{}

 --+ ATTR-NAME = filter

 --+ H-ATTR-NAME = "MP_FILTER"

 --+ H-ATTR-ID = 2043

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 0

 ,

 actionInfo [12] IMPLICIT ActionInfo

 --+ ATTR-NAME = action-Info

 --+ H-ATTR-NAME = "MP_ACTION_INFO"

 --+ H-ATTR-ID = 2005

 --+ ATTR-SYNTAX = 127 "Action-Info"

 --+ VALUE-NUMBER = 1

 }

ActionError::= --+ CL-NAME = Action-Error

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_ACTION_ERROR"

 --+ H-CL-ID = 2001

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 -- Time

 --+ VALUE-NUMBER = 0

 ,

 actionErrorInfo [6] ActionErrorInfo

 --+ ATTR-NAME = action-Error-Info

 --+ H-ATTR-NAME = "MP_ACTION_ERROR_INFO"

 --+ H-ATTR-ID = 2003

 --+ ATTR-SYNTAX = 127 "Action-Error-Info"

 --+ VALUE-NUMBER = 1

 }

244 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

ActionErrorInfo::= --+ CL-NAME = Action-Error-Info

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_ACTION_ERROR_INFO"

 --+ H-CL-ID = 2002

 SEQUENCE { errorStatus ENUMERATED --+ VL-NAME = Error-Status

 { accessDenied (2)

 --+ ELEM-NAME = access-Denied

 --+ H-ELEM-NAME = "MP_E_ACCESS_DENIED"

 --+ H-ELEM-ID = 2

 ,

 noSuchAction (9)

 --+ ELEM-NAME = no-Such-Action

 --+ H-ELEM-NAME = "MP_E_NO_SUCH_ACTION"

 --+ H-ELEM-ID = 9

 ,

 noSuchArgument (14)

 --+ ELEM-NAME = no-Such-Argument

 --+ H-ELEM-NAME = "MP_E_NO_SUCH_ARGUMENT"

 --+ H-ELEM-ID = 14

 ,

 invalidArgumentValue (15)

 --+ ELEM-NAME = invalid-Argument-Value

 --+ H-ELEM-NAME = "MP_E_INVALID_ARGUMENT_VALUE"

 --+ H-ELEM-ID = 15

 }

 --+ ATTR-NAME = error-Status

 --+ H-ATTR-NAME = "MP_ERROR_STATUS"

 --+ H-ATTR-ID = 2035

 --+ ATTR-SYNTAX = 10 "Error-Status"

 --+ VALUE-NUMBER = 1

 ,

 errorInfo CHOICE { actionType ActionTypeId

 --+ ATTR-NAME = action-Type

 --+ H-ATTR-NAME = "MP_ACTION_TYPE"

 --+ H-ATTR-ID = 2010

 --+ ATTR-SYNTAX = 127 "Action-Type-Id"

 --+ VALUE-NUMBER = 0

 ,

 actionArgument [0] NoSuchArgument

 --+ ATTR-NAME = action-Argument

 --+ H-ATTR-NAME = "MP_ACTION_ARGUMENT"

 --+ H-ATTR-ID = 2001

 --+ ATTR-SYNTAX = 127 "No-Such-Argument"

 --+ VALUE-NUMBER = 0

 ,

 argumentValue [1] InvalidArgumentValue

 --+ ATTR-NAME = argument-Value

 --+ H-ATTR-NAME = "MP_ARGUMENT_VALUE"

 --+ H-ATTR-ID = 2014

 --+ ATTR-SYNTAX = 127 "Invalid-Argument-Value"

 --+ VALUE-NUMBER = 0

 }

 --+ ATTR-NAME = error-Info

 --+ H-ATTR-NAME = "MP_ERROR_INFO"

 --+ H-ATTR-ID = 2034

 --+ ATTR-SYNTAX = 127 "Error-Info"

 --+ VALUE-NUMBER = 1

 --+ CL-NAME = Error-Info

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_ERROR_INFO"

 --+ H-CL-ID = 2033

 }

ActionInfo::= --+ CL-NAME = Action-Info

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_ACTION_INFO"

 --+ H-CL-ID = 2003

 SEQUENCE { actionType ActionTypeId

 --+ ATTR-NAME = action-Type

 --+ H-ATTR-NAME = "MP_ACTION_TYPE"

 --+ H-ATTR-ID = 2010

 --+ ATTR-SYNTAX = 127 "Action-Type-Id"

 --+ VALUE-NUMBER = 1

 ,

 actionInfoArg [4] ANY DEFINED BY actionType

 --% ANY_TABLE_REF(ActionInfoTableMod.ActionInfoTypes) %-- OPTIONAL

 --+ ATTR-NAME = action-Info-Arg

 --+ H-ATTR-NAME = "MP_ACTION_INFO_ARG"

 --+ H-ATTR-ID = 2006

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 0

 }

ActionReply::= --+ CL-NAME = Action-Reply

 --+ CL-TYPE = 3

Appendix B. ASN.1 specification of the basic CMIP strings 245

--+ H-CL-NAME = "OMP_O_MP_C_ACTION_REPLY"

 --+ H-CL-ID = 2004

 SEQUENCE { actionType ActionTypeId

 --+ ATTR-NAME = action-Type

 --+ H-ATTR-NAME = "MP_ACTION_TYPE"

 --+ H-ATTR-ID = 2010

 --+ ATTR-SYNTAX = 127 "Action-Type-Id"

 --+ VALUE-NUMBER = 1

 ,

 actionReplyInfo [4] ANY DEFINED BY actionType

 --% ANY_TABLE_REF(ActionReplyTableMod.ActionReplyTypes)

 --+ ATTR-NAME = action-Reply-Info

 --+ H-ATTR-NAME = "MP_ACTION_REPLY_INFO"

 --+ H-ATTR-ID = 2008

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 1

 }

ActionResult::= --+ SUPER-CLASS = Action-Result

 --+ CL-NAME = CMIS-Action-Result

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_ACTION_RESULT"

 --+ H-CL-ID = 2013

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 actionReply [6] IMPLICIT ActionReply OPTIONAL

 --+ ATTR-NAME = action-Reply

 --+ H-ATTR-NAME = "MP_ACTION_REPLY"

 --+ H-ATTR-ID = 2007

 --+ ATTR-SYNTAX = 127 "Action-Reply"

 --+ VALUE-NUMBER = 0

 }

-- This has been adapted to align with the comments below.

-- The CHOICE has been eliminated to simplify processing

-- and the use of the API.

ActionTypeId::= [2] IMPLICIT OBJECT IDENTIFIER

-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for

-- localForm.

-- Where this alternative is used, the permissible values for the integers

-- and their meanings shall be defined as part of the application context

-- in which they are used.

Attribute::= --+ CL-NAME = Attribute

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE"

 --+ H-CL-ID = 2006

 SEQUENCE { attributeId AttributeId

 --+ ATTR-NAME = attribute-Id

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"

 --+ H-ATTR-ID = 2017

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 1

 ,

 attributeValue ANY DEFINED BY attributeId

 --% ANY_TABLE_REF(AttributeTableMod.AttributeTypes)

 --+ ATTR-NAME = attribute-Value

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_VALUE"

 --+ H-ATTR-ID = 2022

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 1

 }

AttributeError::= --+ CL-NAME = Attribute-Error

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE_ERROR"

 --+ H-CL-ID = 2007

 SEQUENCE { errorStatus ENUMERATED --+ VL-NAME = Error-Status

246 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

{ accessDenied (2),

 noSuchAttribute (5)

 --+ ELEM-NAME = no-Such-Attribute

 --+ H-ELEM-NAME = "MP_E_NO_SUCH_ATTRIBUTE"

 --+ H-ELEM-ID = 5

 ,

 invalidAttributeValue (6)

 --+ ELEM-NAME = invalid-Attribute-Value

 --+ H-ELEM-NAME = "MP_E_INVALID_ATTRIBUTE_VALUE"

 --+ H-ELEM-ID = 6

 ,

 invalidOperation (24)

 --+ ELEM-NAME = invalid-Operation

 --+ H-ELEM-NAME = "MP_E_INVALID_OPERATION"

 --+ H-ELEM-ID = 24

 ,

 invalidOperator (25)

 --+ ELEM-NAME = invalid-Operator

 --+ H-ELEM-NAME = "MP_E_INVALID_OPERATOR"

 --+ H-ELEM-ID = 25

 }

 --+ ATTR-NAME = error-Status

 --+ H-ATTR-NAME = "MP_ERROR_STATUS"

 --+ H-ATTR-ID = 2035

 --+ ATTR-SYNTAX = 10 "Error-Status"

 --+ VALUE-NUMBER = 1

 ,

 modifyOperator [2] IMPLICIT ModifyOperator OPTIONAL

 --+ ATTR-NAME = modify-Operator

 --+ H-ATTR-NAME = "MP_MODIFY_OPERATOR"

 --+ H-ATTR-ID = 2060

 --+ ATTR-SYNTAX = 10 "Modify-Operator"

 --+ VALUE-NUMBER = 0

 ,

 attributeId AttributeId

 --+ ATTR-NAME = attribute-Id

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"

 --+ H-ATTR-ID = 2017

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 1

 ,

 attributeValue ANY DEFINED BY attributeId

 --% ANY_TABLE_REF(AttributeTableMod.AttributeTypes) %-- OPTIONAL

 --+ ATTR-NAME = attribute-Value

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_VALUE"

 --+ H-ATTR-ID = 2022

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 0

 }

-- This has been adapted to align with the comments below.

-- The CHOICE has been eliminated to simplify processing

-- and the use of the API.

AttributeId ::= [0] IMPLICIT OBJECT IDENTIFIER

-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for

-- localForm.

-- Where this alternative is used, the permissible values for the integers

-- and their meanings shall be defined as part of the application context

-- in which they are used.

AttributeIdError::= --+ CL-NAME = Attribute-Id-Error

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE_ID_ERROR"

 --+ H-CL-ID = 2009

 SEQUENCE { errorStatus ENUMERATED { accessDenied (2),

 noSuchAttribute (5) }

 --+ ATTR-NAME = error-Status

 --+ H-ATTR-NAME = "MP_ERROR_STATUS"

 --+ H-ATTR-ID = 2035

 --+ ATTR-SYNTAX = 10 "Error-Status"

 --+ VALUE-NUMBER = 1

 ,

 attributeId AttributeId

 --+ ATTR-NAME = attribute-Id

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"

 --+ H-ATTR-ID = 2017

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 1

 }

BaseManagedObjectId::= --+ CL-NAME = Base-Managed-Object-Id

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_BASE_MANAGED_OBJETC_ID"

 --+ H-CL-ID = 2011

 SEQUENCE { baseManagedObjectClass ObjectClass

 --+ ATTR-NAME = base-Managed-Object-Class

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2023

Appendix B. ASN.1 specification of the basic CMIP strings 247

--+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 baseManagedObjectInstance ObjectInstance

 --+ ATTR-NAME = base-Managed-Object-Instance

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2024

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 1

 }

CMISFilter::= --+ CL-NAME = CMIS-Filter

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_FILTER"

 --+ H-CL-ID = 2021

 CHOICE { item [8] FilterItem

 --+ ATTR-NAME = item

 --+ H-ATTR-NAME = "MP_ITEM"

 --+ H-ATTR-ID = 2053

 --+ ATTR-SYNTAX = 127 "Filter-Item"

 --+ VALUE-NUMBER = 0

 ,

 and [9] IMPLICIT SET OF CMISFilter

 --+ ATTR-NAME = and

 --+ H-ATTR-NAME = "MP_AND"

 --+ H-ATTR-ID = 2012

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 2

 ,

 or [10] IMPLICIT SET OF CMISFilter

 --+ ATTR-NAME = or

 --+ H-ATTR-NAME = "MP_OR"

 --+ H-ATTR-ID = 2065

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 2

 ,

 not [11] CMISFilter

 --+ ATTR-NAME = not

 --+ H-ATTR-NAME = "MP_NOT"

 --+ H-ATTR-ID = 2064

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 0

 }

CMISSync::= ENUMERATED --+ VL-NAME = CMIS-Sync

 { bestEffort (0)

 --+ ELEM-NAME = best-effort

 --+ H-ELEM-NAME = "MP_T_BEST_EFFORT"

 --+ H-ELEM-ID = 0

 ,

 atomic (1)

 --+ ELEM-NAME = atomic

 --+ H-ELEM-NAME = "MP_T_ATOMIC"

 --+ H-ELEM-ID = 1

 }

ComplexityLimitation::= --+ CL-NAME = Complexity-Limitation

 --+ CL-TYPE = 1

 --+ H-CL-NAME = "OMP_O_MP_C_COMPLEXITY_LIMITATION"

 --+ H-CL-ID = 2030

 SET { scope [0] Scope OPTIONAL

 --+ ATTR-NAME = scope

 --+ H-ATTR-NAME = "MP_SCOPE"

 --+ H-ATTR-ID = 2070

 --+ ATTR-SYNTAX = 127 "Scope"

 --+ VALUE-NUMBER = 0

 ,

 filter [1] CMISFilter OPTIONAL

 --+ ATTR-NAME = filter

 --+ H-ATTR-NAME = "MP_FILTER"

 --+ H-ATTR-ID = 2043

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 0

 ,

 sync [2] CMISSync OPTIONAL

 --+ ATTR-NAME = synchronization

 --+ H-ATTR-NAME = "MP_SYNCHRONIZATION"

 --+ H-ATTR-ID = 2080

 --+ ATTR-SYNTAX = 10 "CMIS-Sync"

 --+ VALUE-NUMBER = 0

 }

CreateArgument::= --+ SUPER-CLASS = Create-Argument

 --+ CL-NAME = CMIS-Create-Argument

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_CREATE_ARGUMENT"

248 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

--+ H-CL-ID = 2015

 SEQUENCE { managedObjectClass ObjectClass

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 CHOICE { managedObjectInstance ObjectInstance

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 superiorObjectInstance [8] ObjectInstance

 --+ ATTR-NAME = superior-Object-Instance

 --+ H-ATTR-NAME = "MP_SUPERIOR_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2078

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 } OPTIONAL

 --+ ATTR-NAME = create-Object-Instance

 --+ H-ATTR-NAME = "MP_CREATE_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2026

 --+ ATTR-SYNTAX = 127 "Create-Object-Instance"

 --+ VALUE-NUMBER = 0

 --+ CL-NAME = Create-Object-Instance

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_CREATE_OBJECT_INSTANCE"

 --+ H-CL-ID = 2031

 ,

 accessControl [5] AccessControl OPTIONAL

 --+ ATTR-NAME = access-Control

 --+ H-ATTR-NAME = "MP_ACCESS_CONTROL"

 --+ H-ATTR-ID = 1001

 --+ ATTR-SYNTAX = 127 "Access-Control"

 --+ VALUE-NUMBER = 0

 ,

 referenceObjectInstance [6] ObjectInstance OPTIONAL

 --+ ATTR-NAME = reference-Object-Instance

 --+ H-ATTR-NAME = "MP_REFERENCE_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2068

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 attributeList [7] IMPLICIT SET OF Attribute OPTIONAL

 --+ ATTR-NAME = attribute-List

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"

 --+ H-ATTR-ID = 2021

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 2

 }

CreateResult::= --+ SUPER-CLASS = Create-Result

 --+ CL-NAME = CMIS-Create-Result

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_CREATE_RESULT"

 --+ H-CL-ID = 2016

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 -- shall be returned if omitted from CreateArgument

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

 --+ ATTR-NAME = attribute-List

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"

 --+ H-ATTR-ID = 2021

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 2

Appendix B. ASN.1 specification of the basic CMIP strings 249

}

DeleteArgument::= --+ SUPER-CLASS = Delete-Argument

 --+ CL-NAME = CMIS-Delete-Argument

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_DELETE_ARGUMENT"

 --+ H-CL-ID = 2017

 SEQUENCE { baseManagedObjectClass ObjectClass

 --+ ATTR-NAME = base-Managed-Object-Class

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2023

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 baseManagedObjectInstance ObjectInstance

 --+ ATTR-NAME = base-Managed-Object-Instance

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2024

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 1

 ,

 accessControl [5] AccessControl OPTIONAL

 --+ ATTR-NAME = access-Control

 --+ H-ATTR-NAME = "MP_ACCESS_CONTROL"

 --+ H-ATTR-ID = 1001

 --+ ATTR-SYNTAX = 127 "Access-Control"

 --+ VALUE-NUMBER = 0

 ,

 synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

 --+ ATTR-NAME = synchronization

 --+ H-ATTR-NAME = "MP_SYNCHRONIZATION"

 --+ H-ATTR-ID = 2080

 --+ ATTR-SYNTAX = 10 "CMIS-Sync"

 --+ VALUE-NUMBER = 0

 ,

 scope [7] Scope DEFAULT basicScope : baseObject

 --+ ATTR-NAME = scope

 --+ H-ATTR-NAME = "MP_SCOPE"

 --+ H-ATTR-ID = 2070

 --+ ATTR-SYNTAX = 127 "Scope"

 --+ VALUE-NUMBER = 0

 ,

 filter CMISFilter DEFAULT and:{}

 --+ ATTR-NAME = filter

 --+ H-ATTR-NAME = "MP_FILTER"

 --+ H-ATTR-ID = 2043

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 0

 }

DeleteError::= --+ CL-NAME = Delete-Error

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_DELETE_ERROR"

 --+ H-CL-ID = 2032

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 deleteErrorInfo [6] ENUMERATED --+ VL-NAME = Delete-Error-Info

 { accessDenied (2)

 --+ ELEM-NAME = access-Denied

 --+ H-ELEM-NAME = "MP_E_ACCESS_DENIED"

 --+ H-ELEM-ID = 2

 }

 --+ ATTR-NAME = delete-Error-Info

 --+ H-ATTR-NAME = "MP_DELETE_ERROR_INFO"

 --+ H-ATTR-ID = 2029

 --+ ATTR-SYNTAX = 10 "Delete-Error-Info"

 --+ VALUE-NUMBER = 1

250 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

}

DeleteResult::= --+ SUPER-CLASS = Delete-Result

 --+ CL-NAME = CMIS-Delete-Result

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_DELETE_RESULT"

 --+ H-CL-ID = 2018

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 }

EventReply::= --+ CL-NAME = Event-Reply

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_EVENT_REPLY"

 --+ H-CL-ID = 2034

 SEQUENCE { eventType EventTypeId

 --+ ATTR-NAME = event-Type

 --+ H-ATTR-NAME = "MP_EVENT_TYPE"

 --+ H-ATTR-ID = 2041

 --+ ATTR-SYNTAX = 127 "Event-Type-Id"

 --+ VALUE-NUMBER = 1

 ,

 eventReplyInfo [8] ANY DEFINED BY eventType

 --% ANY_TABLE_REF (NotificationReplyTableMod.NotificationReplyTypes)

 %-- OPTIONAL

 --+ ATTR-NAME = event-Reply-Info

 --+ H-ATTR-NAME = "MP_EVENT_REPLY_INFO"

 --+ H-ATTR-ID = 2039

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 0

 }

EventReportArgument::= --+ SUPER-CLASS = Event-Report-Argument

 --+ CL-NAME = CMIS-Event-Report-Argument

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_EVENT_REPORT_ARGUMENT"

 --+ H-CL-ID = 2019

 SEQUENCE { managedObjectClass ObjectClass

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 managedObjectInstance ObjectInstance

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 1

 ,

 eventTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = event-Time

 --+ H-ATTR-NAME = "MP_EVENT_TIME"

 --+ H-ATTR-ID = 2040

 --+ ATTR-SYNTAX = 24

 -- Time

 --+ VALUE-NUMBER = 0

 ,

 eventType EventTypeId

 --+ ATTR-NAME = event-Type

 --+ H-ATTR-NAME = "MP_EVENT_TYPE"

 --+ H-ATTR-ID = 2041

 --+ ATTR-SYNTAX = 127 "Event-Type-Id"

 --+ VALUE-NUMBER = 1

 ,

 eventInfo [8] ANY DEFINED BY eventType

Appendix B. ASN.1 specification of the basic CMIP strings 251

--% ANY_TABLE_REF (NotificationInfoTableMod.NotificationTypes)

 %-- OPTIONAL

 --+ ATTR-NAME = event-Info

 --+ H-ATTR-NAME = "MP_EVENT_INFO"

 --+ H-ATTR-ID = 2037

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 0

 }

EventReportResult::= --+ SUPER-CLASS = Event-Report-Result

 --+ CL-NAME = CMIS-Event-Report-Result

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_EVENT_REPORT_RESULT"

 --+ H-CL-ID = 2020

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 eventReply EventReply OPTIONAL

 --+ ATTR-NAME = event-Reply

 --+ H-ATTR-NAME = "MP_EVENT_REPLY"

 --+ H-ATTR-ID = 2038

 --+ ATTR-SYNTAX = 127 "Event-Reply"

 --+ VALUE-NUMBER = 0

 }

-- This has been adapted to align with the comments below.

-- The CHOICE has been eliminated to simplify processing

-- and the use of the API.

EventTypeId ::= [6] IMPLICIT OBJECT IDENTIFIER

-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for

-- localForm.

-- Where this alternative is used, the permissible values for the integers

-- and their meanings shall be defined as part of the application context

-- in which they are used.

FilterItem::= --+ CL-NAME = Filter-Item

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_FILTER_ITEM"

 --+ H-CL-ID = 2036

 CHOICE { equality [0] IMPLICIT Attribute

 --+ ATTR-NAME = equality

 --+ H-ATTR-NAME = "MP_EQUALITY"

 --+ H-ATTR-ID = 2032

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 ,

 substrings [1] IMPLICIT SEQUENCE OF Substrings

 --+ ATTR-NAME = substrings

 --+ H-ATTR-NAME = "MP_SUBSTRINGS"

 --+ H-ATTR-ID = 2077

 --+ ATTR-SYNTAX = 127 "Substrings"

 --+ VALUE-NUMBER = 2

 ,

 greaterOrEqual [2] IMPLICIT Attribute -- asserted value >= attribute value

 --+ ATTR-NAME = greater-Or-Equal

 --+ H-ATTR-NAME = "MP_GREATER_OR_EQUAL"

 --+ H-ATTR-ID = 2050

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 ,

 lessOrEqual [3] IMPLICIT Attribute -- asserted value <= attribute value

 --+ ATTR-NAME = less-Or-Equal

 --+ H-ATTR-NAME = "MP_LESS_OR_EQUAL"

 --+ H-ATTR-ID = 2054

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 ,

 present [4] AttributeId

 --+ ATTR-NAME = present

252 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

--+ H-ATTR-NAME = "MP_PRESENT"

 --+ H-ATTR-ID = 2066

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 0

 ,

 subsetOf [5] IMPLICIT Attribute -- asserted value is a subset of attribute value

 --+ ATTR-NAME = subset-Of

 --+ H-ATTR-NAME = "MP_SUBSET_OF"

 --+ H-ATTR-ID = 2076

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 ,

 supersetOf [6] IMPLICIT Attribute -- asserted value is a superset of attribute value

 --+ ATTR-NAME = superset-Of

 --+ H-ATTR-NAME = "MP_SUPERSET_OF"

 --+ H-ATTR-ID = 2079

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 ,

 nonNullSetIntersection [7] IMPLICIT Attribute

 --+ ATTR-NAME = non-Null-Set-Intersection

 --+ H-ATTR-NAME = "MP_NON_NULL_SET_INTERSECTION"

 --+ H-ATTR-ID = 2062

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 }

 Substring ::= --+ CL-NAME = Substring

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_SUBSTRING"

 --+ H-CL-ID = 2053

 SEQUENCE { attributeId AttributeId

 --+ ATTR-NAME = attribute-Id

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"

 --+ H-ATTR-ID = 2017

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 1

 ,

 string ANY DEFINED BY attributeId

 --% ANY_TABLE_REF(AttributeTableMod.AttributeTypes)

 --+ ATTR-NAME = string

 --+ H-ATTR-NAME = "MP_STRING"

 --+ H-ATTR-ID = 1039

 --+ ATTR-SYNTAX = 27

 --+ VALUE-NUMBER = 3

 }

 Substrings ::= --+ CL-NAME = Substrings

 --+ CL-TYPE = 4

 --+ H-CL-NAME = "OMP_O_MP_C_SUBSTRINGS"

 --+ H-CL-ID = 2054

 CHOICE { initialString [0] IMPLICIT Substring

 --+ ATTR-NAME = initial-String

 --+ H-ATTR-NAME = "MP_INITIAL_STRING"

 --+ H-ATTR-ID = 2052

 --+ ATTR-SYNTAX = 127 "Substring"

 --+ VALUE-NUMBER = 0

 ,

 anyString [1] IMPLICIT Substring

 --+ ATTR-NAME = any-Substring

 --+ H-ATTR-NAME = "MP_ANY_STRING"

 --+ H-ATTR-ID = 2013

 --+ ATTR-SYNTAX = 127 "Substring"

 --+ VALUE-NUMBER = 0

 ,

 finalString [2] IMPLICIT Substring

 --+ ATTR-NAME = final-String

 --+ H-ATTR-NAME = "MP_FINAL_STRING"

 --+ H-ATTR-ID = 2044

 --+ ATTR-SYNTAX = 127 "Substring"

 --+ VALUE-NUMBER = 0

 }

GetArgument::= --+ SUPER-CLASS = Get-Argument

 --+ CL-NAME = CMIS-Get-Argument

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_GET_ARGUMENT"

 --+ H-CL-ID = 2022

 SEQUENCE { baseManagedObjectClass ObjectClass

 --+ ATTR-NAME = base-Managed-Object-Class

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2023

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 baseManagedObjectInstance ObjectInstance

Appendix B. ASN.1 specification of the basic CMIP strings 253

--+ ATTR-NAME = base-Managed-Object-Instance

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2024

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 1

 ,

 accessControl [5] AccessControl OPTIONAL

 --+ ATTR-NAME = access-Control

 --+ H-ATTR-NAME = "MP_ACCESS_CONTROL"

 --+ H-ATTR-ID = 1001

 --+ ATTR-SYNTAX = 127 "Access-Control"

 --+ VALUE-NUMBER = 0

 ,

 synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

 --+ ATTR-NAME = synchronization

 --+ H-ATTR-NAME = "MP_SYNCHRONIZATION"

 --+ H-ATTR-ID = 2080

 --+ ATTR-SYNTAX = 10 "CMIS-Sync"

 --+ VALUE-NUMBER = 0

 ,

 scope [7] Scope DEFAULT basicScope : baseObject

 --+ ATTR-NAME = scope

 --+ H-ATTR-NAME = "MP_SCOPE"

 --+ H-ATTR-ID = 2070

 --+ ATTR-SYNTAX = 127 "Scope"

 --+ VALUE-NUMBER = 0

 ,

 filter CMISFilter DEFAULT and:{}

 --+ ATTR-NAME = filter

 --+ H-ATTR-NAME = "MP_FILTER"

 --+ H-ATTR-ID = 2043

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 0

 ,

 attributeIdList [12] IMPLICIT SET OF AttributeId OPTIONAL

 --+ ATTR-NAME = attribute-Id-List

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID_LIST"

 --+ H-ATTR-ID = 2020

 --+ ATTR-SYNTAX = 127 "Attribute-Id-List"

 --+ VALUE-NUMBER = 0

 --+ CL-NAME = Attribute-Id-List

 --+ CL-TYPE = 2

 --+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE_ID_LIST"

 --+ H-CL-ID = 2010

 --+ ATTR-NAME = attribute-Id

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"

 --+ H-ATTR-ID = 2017

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 2

 }

GetInfoStatus::= --+ CL-NAME = Get-Info-Status

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_GET_INFO_STATUS"

 --+ H-CL-ID = 2037

 CHOICE { attributeIdError [0] IMPLICIT AttributeIdError

 --+ ATTR-NAME = attribute-Id-Error

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID_ERROR"

 --+ H-ATTR-ID = 2019

 --+ ATTR-SYNTAX = 127 "Attribute-Id-Error"

 --+ VALUE-NUMBER = 0

 ,

 attribute [1] IMPLICIT Attribute

 --+ ATTR-NAME = attribute

 --+ H-ATTR-NAME = "MP_ATTRIBUTE"

 --+ H-ATTR-ID = 2015

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 }

GetListError::= --+ SUPER-CLASS = Get-List-Error

 --+ CL-NAME = CMIS-Get-List-Error

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_GET_LIST_ERROR"

 --+ H-CL-ID = 2023

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

254 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

--+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 getInfoList [6] IMPLICIT SET OF GetInfoStatus

 --+ ATTR-NAME = get-Info-List

 --+ H-ATTR-NAME = "MP_GET_INFO_LIST"

 --+ H-ATTR-ID = 2045

 --+ ATTR-SYNTAX = 127 "Get-Info-Status"

 --+ VALUE-NUMBER = 3

 }

GetResult::= --+ SUPER-CLASS = Get-Result

 --+ CL-NAME = CMIS-Get-Result

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_GET_RESULT"

 --+ H-CL-ID = 2024

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

 --+ ATTR-NAME = attribute-List

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"

 --+ H-ATTR-ID = 2021

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 2

 }

InvalidArgumentValue::= --+ CL-NAME = Invalid-Argument-Value

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_INVALID_ARGUMENT_VALUE"

 --+ H-CL-ID = 2038

 CHOICE { actionValue [0] IMPLICIT ActionInfo

 --+ ATTR-NAME = action-Value

 --+ H-ATTR-NAME = "MP_ACTION_VALUE"

 --+ H-ATTR-ID = 2011

 --+ ATTR-SYNTAX = 127 "Action-Info"

 --+ VALUE-NUMBER = 0

 ,

 eventValue [1] IMPLICIT SEQUENCE { eventType EventTypeId,

 eventInfo [8] ANY DEFINED BY eventType

 --% ANY_TABLE_REF

(NotificationInfoTableMod.NotificationReplyTypes) %-- OPTIONAL }

 --+ ATTR-NAME = event-Value

 --+ H-ATTR-NAME = "MP_EVENT_VALUE"

 --+ H-ATTR-ID = 2042

 --+ ATTR-SYNTAX = 127 "Event-Reply"

 --+ VALUE-NUMBER = 0

 }

LinkedReplyArgument::= --+ SUPER-CLASS = Linked-Reply-Argument

 --+ CL-NAME = CMIS-Linked-Reply-Argument

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_LINKED_REPLY_ARGUMENT"

 --+ H-CL-ID = 2025

 CHOICE { getResult [0] IMPLICIT GetResult

 --+ ATTR-NAME = get-Result

 --+ H-ATTR-NAME = "MP_GET_RESULT"

 --+ H-ATTR-ID = 2048

 --+ ATTR-SYNTAX = 127 "CMIS-Get-Result"

 --+ VALUE-NUMBER = 0

 ,

Appendix B. ASN.1 specification of the basic CMIP strings 255

getListError [1] IMPLICIT GetListError

 --+ ATTR-NAME = get-List-Error

 --+ H-ATTR-NAME = "MP_GET_LIST_ERROR"

 --+ H-ATTR-ID = 2047

 --+ ATTR-SYNTAX = 127 "CMIS-Get-List-Error"

 --+ VALUE-NUMBER = 0

 ,

 setResult [2] IMPLICIT SetResult

 --+ ATTR-NAME = set-Result

 --+ H-ATTR-NAME = "MP_SET_RESULT"

 --+ H-ATTR-ID = 2074

 --+ ATTR-SYNTAX = 127 "CMIS-Set-Result"

 --+ VALUE-NUMBER = 0

 ,

 setListError [3] IMPLICIT SetListError

 --+ ATTR-NAME = set-List-Error

 --+ H-ATTR-NAME = "MP_SET_LIST_ERROR"

 --+ H-ATTR-ID = 2072

 --+ ATTR-SYNTAX = 127 "CMIS-Set-List-Error"

 --+ VALUE-NUMBER = 0

 ,

 actionResult [4] IMPLICIT ActionResult

 --+ ATTR-NAME = action-Result

 --+ H-ATTR-NAME = "MP_ACTION_RESULT"

 --+ H-ATTR-ID = 2009

 --+ ATTR-SYNTAX = 127 "CMIS-Action-Result"

 --+ VALUE-NUMBER = 0

 ,

 processingFailure [5] IMPLICIT ProcessingFailure

 --+ ATTR-NAME = processing-Failure

 --+ H-ATTR-NAME = "MP_PROCESSING_FAILURE"

 --+ H-ATTR-ID = 2067

 --+ ATTR-SYNTAX = 127 "Processing-Failure"

 --+ VALUE-NUMBER = 0

 ,

 deleteResult [6] IMPLICIT DeleteResult

 --+ ATTR-NAME = delete-Result

 --+ H-ATTR-NAME = "MP_DELETE_RESULT"

 --+ H-ATTR-ID = 2030

 --+ ATTR-SYNTAX = 127 "CMIS-Delete-Result"

 --+ VALUE-NUMBER = 0

 ,

 actionError [7] IMPLICIT ActionError

 --+ ATTR-NAME = action-Error

 --+ H-ATTR-NAME = "MP_ACTION_ERROR"

 --+ H-ATTR-ID = 2002

 --+ ATTR-SYNTAX = 127 "Action-Error"

 --+ VALUE-NUMBER = 0

 ,

 deleteError [8] IMPLICIT DeleteError

 --+ ATTR-NAME = delete-Error

 --+ H-ATTR-NAME = "MP_DELETE_ERROR"

 --+ H-ATTR-ID = 2028

 --+ ATTR-SYNTAX = 127 "Delete-Error"

 --+ VALUE-NUMBER = 0

 }

ModifyOperator::= INTEGER --+ VL-NAME = Modify-Operator

 { replace (0)

 --+ ELEM-NAME = replace

 --+ H-ELEM-NAME = "MP_T_REPLACE"

 --+ H-ELEM-ID = 0

 ,

 addValues (1)

 --+ ELEM-NAME = add-Values

 --+ H-ELEM-NAME = "MP_T_ADD_VALUES"

 --+ H-ELEM-ID = 1

 ,

 removeValues (2)

 --+ ELEM-NAME = remove-Values

 --+ H-ELEM-NAME = "MP_T_REMOVE_VALUES"

 --+ H-ELEM-ID = 2

 ,

 setToDefault (3)

 --+ ELEM-NAME = set-To-Default

 --+ H-ELEM-NAME = "MP_T_SET_TO_DEFAULT"

 --+ H-ELEM-ID = 3

 }

NoSuchAction::= --+ CL-NAME = No-Such-Action

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_ACTION"

 --+ H-CL-ID = 2042

 SEQUENCE { managedObjectClass ObjectClass

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

256 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

--+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 actionType ActionTypeId

 --+ ATTR-NAME = action-Type

 --+ H-ATTR-NAME = "MP_ACTION_TYPE"

 --+ H-ATTR-ID = 2010

 --+ ATTR-SYNTAX = 127 "Action-Type-Id"

 --+ VALUE-NUMBER = 1

 }

NoSuchArgument::= --+ CL-NAME = No-Such-Argument

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_ARGUMENT"

 --+ H-CL-ID = 2044

 CHOICE { actionId [0] IMPLICIT SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 actionType ActionTypeId

 --+ ATTR-NAME = action-Type

 --+ H-ATTR-NAME = "MP_ACTION_TYPE"

 --+ H-ATTR-ID = 2010

 --+ ATTR-SYNTAX = 127 "Action-Type-Id"

 --+ VALUE-NUMBER = 1

 }

 --+ ATTR-NAME = action-Id

 --+ H-ATTR-NAME = "MP_ACTION_ID"

 --+ H-ATTR-ID = 2004

 --+ ATTR-SYNTAX = 127 "No-Such-Action-Id"

 --+ VALUE-NUMBER = 0

 --+ CL-NAME = No-Such-Action-Id

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_ACTION_ID"

 --+ H-CL-ID = 2043

 ,

 eventId [1] IMPLICIT SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 eventType EventTypeId

 --+ ATTR-NAME = event-Type

 --+ H-ATTR-NAME = "MP_EVENT_TYPE"

 --+ H-ATTR-ID = 2041

 --+ ATTR-SYNTAX = 127 "Event-Type-Id"

 --+ VALUE-NUMBER = 1

 }

 --+ ATTR-NAME = event-Id

 --+ H-ATTR-NAME = "MP_EVENT_ID"

 --+ H-ATTR-ID = 2036

 --+ ATTR-SYNTAX = 127 "No-Such-Event-Id"

 --+ VALUE-NUMBER = 0

 --+ CL-NAME = No-Such-Event-Id

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_EVENT_ID"

 --+ H-CL-ID = 2045

 }

NoSuchEventType::= --+ CL-NAME = No-Such-Event-Type

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_EVENT_TYPE"

 --+ H-CL-ID = 2046

 SEQUENCE { managedObjectClass ObjectClass

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 eventType EventTypeId

 --+ ATTR-NAME = event-Type

 --+ H-ATTR-NAME = "MP_EVENT_TYPE"

 --+ H-ATTR-ID = 2041

 --+ ATTR-SYNTAX = 127 "Event-Type-Id"

 --+ VALUE-NUMBER = 1

 }

-- ADDED to allow support for allomorphic Notifications

-- The first production is used by the Infrastructure to parse the

-- notification as a complete unit. This gets around the resolution

Appendix B. ASN.1 specification of the basic CMIP strings 257

-- of the argument to EventReportArgument in the ROIV production.

-- The second production is used in the place of EventReportArgument

-- when applications wish to emit notifications

Notification ::= [1] IMPLICIT SEQUENCE

 {invokeID InvokeIDType,

 linked-ID [0] IMPLICIT InvokeIDType OPTIONAL,

 operation-value Operation,

 argument NotificationArg

 }

NotificationArg ::= SEQUENCE

 {

 allomorphs SET OF ObjectClass OPTIONAL,

 managedObjectClass ObjectClass,

 managedObjectInstance ObjectInstance,

 eventTime [5] IMPLICIT GeneralizedTime OPTIONAL,

 eventType EventTypeId,

 eventInfo [8] ANY DEFINED BY eventType

 --% ANY_TABLE_REF (NotificationInfoTableMod.NotificationTypes) %-- OPTIONAL

 }

-- End of Notification addition

-- This is actually a CHOICE of OBJECT IDENTIFIER or INTEGER

-- but we only support OBJECT IDENTIFIER, so the syntax was simplified

-- to shorten the strings at the API

ObjectClass ::= [0] IMPLICIT OBJECT IDENTIFIER

-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for

-- localForm.

-- Where this alternative is used, the permissible values for the integers

-- and their meanings shall be defined as part of the application context

-- in which they are used.

ObjectInstance::= --+ CL-NAME = Object-Instance

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_OBJECT_INSTANCE"

 --+ H-CL-ID = 2048

 CHOICE { distinguishedName [2] IMPLICIT DistinguishedName

 --+ ATTR-NAME = distinguished-Name

 --+ H-ATTR-NAME = "MP_DISTINGUISHED_NAME"

 --+ H-ATTR-ID = 2031

 --+ ATTR-SYNTAX = 127 "DS-DN"

 --+ VALUE-NUMBER = 0

 ,

 nonSpecificForm [3] IMPLICIT OCTET STRING

 --+ ATTR-NAME = non-Specific-Form

 --+ H-ATTR-NAME = "MP_NON_SPECIFIC_FORM"

 --+ H-ATTR-ID = 2063

 --+ ATTR-SYNTAX = 4

 --+ VALUE-NUMBER = 0

 ,

 localDistinguishedName [4] IMPLICIT RDNSequence

 --+ ATTR-NAME = local-DN

 --+ H-ATTR-NAME = "MP_LOCAL_DN"

 --+ H-ATTR-ID = 2055

 --+ ATTR-SYNTAX = 127 "DS-DN"

 --+ VALUE-NUMBER = 0

 }

-- localDistinguishedName is that portion of the distinguished name that is

-- necessary to unambiguosly identify the managed object within the context

-- of communication between the open systems

ProcessingFailure::= --+ CL-NAME = Processing-Failure

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_PROCESSING_FAILURE"

 --+ H-CL-ID = 2049

 SEQUENCE { managedObjectClass ObjectClass

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 specificErrorInfo [5] SpecificErrorInfo

 --+ ATTR-NAME = specific-Error-Info

 --+ H-ATTR-NAME = "MP_SPECIFIC_ERROR_INFO"

 --+ H-ATTR-ID = 2075

 --+ ATTR-SYNTAX = 127 "Specific-Error-Info"

 --+ VALUE-NUMBER = 1

 }

258 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Scope::= --+ CL-NAME = Scope

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_SCOPE"

 --+ H-CL-ID = 2050

 CHOICE { basicScope INTEGER --+ VL-NAME = Scope

 { baseObject (0)

 --+ ELEM-NAME = base-Object

 --+ H-ELEM-NAME = "MP_T_BASE_OBJECT"

 --+ H-ELEM-ID = 0

 ,

 firstLevelOnly (1)

 --+ ELEM-NAME = first-Level-Only

 --+ H-ELEM-NAME = "MP_T_FIRST_LEVEL_ONLY"

 --+ H-ELEM-ID = 1

 ,

 wholeSubtree (2)

 --+ ELEM-NAME = whole-Subtree

 --+ H-ELEM-NAME = "MP_T_WHOLE_SUBTREE"

 --+ H-ELEM-ID = 2

 }

 --+ ATTR-NAME = named-Numbers

 --+ H-ATTR-NAME = "MP_NAMED_NUMBERS"

 --+ H-ATTR-ID = 2061

 --+ ATTR-SYNTAX = 10 "Scope"

 --+ VALUE-NUMBER = 0

 ,

 individualLevels [1] IMPLICIT INTEGER

 -- POSITIVE integer that indicates the level to be selected

 --+ ATTR-NAME = individual-Levels

 --+ H-ATTR-NAME = "MP_INDIVIDUAL_LEVELS"

 --+ H-ATTR-ID = 2051

 --+ ATTR-SYNTAX = 2

 --+ VALUE-NUMBER = 0

 ,

 baseToNthLevel [2] IMPLICIT INTEGER

 -- POSITIVE integer that indicates the range of levels (0-N) is to be selected

 --+ ATTR-NAME = base-To-Nth-Level

 --+ H-ATTR-NAME = "MP_BASE_TO_NTH_LEVEL"

 --+ H-ATTR-ID = 2025

 --+ ATTR-SYNTAX = 2

 --+ VALUE-NUMBER = 0

 }

-- with individualLevels and baseToNthLevel, a value of 0 has the same semantics

-- as baseObject

-- with individualLevels, a value of 1 has the same semantics as firstLevelOnly

SetArgument::= --+ SUPER-CLASS = Set-Argument

 --+ CL-NAME = CMIS-Set-Argument

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_SET_ARGUMENT"

 --+ H-CL-ID = 2027

 SEQUENCE { baseManagedObjectClass ObjectClass

 --+ ATTR-NAME = base-Managed-Object-Class

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2023

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 1

 ,

 baseManagedObjectInstance ObjectInstance

 --+ ATTR-NAME = base-Managed-Object-Instance

 --+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2024

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 1

 ,

 accessControl [5] AccessControl OPTIONAL

 --+ ATTR-NAME = access-Control

 --+ H-ATTR-NAME = "MP_ACCESS_CONTROL"

 --+ H-ATTR-ID = 1001

 --+ ATTR-SYNTAX = 127 "Access-Control"

 --+ VALUE-NUMBER = 0

 ,

 synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

 --+ ATTR-NAME = synchronization

 --+ H-ATTR-NAME = "MP_SYNCHRONIZATION"

 --+ H-ATTR-ID = 2080

 --+ ATTR-SYNTAX = 10 "CMIS-Sync"

 --+ VALUE-NUMBER = 0

 ,

 scope [7] Scope DEFAULT basicScope : baseObject

 --+ ATTR-NAME = scope

 --+ H-ATTR-NAME = "MP_SCOPE"

 --+ H-ATTR-ID = 2070

 --+ ATTR-SYNTAX = 127 "Scope"

Appendix B. ASN.1 specification of the basic CMIP strings 259

--+ VALUE-NUMBER = 0

 ,

 filter CMISFilter DEFAULT and:{}

 --+ ATTR-NAME = filter

 --+ H-ATTR-NAME = "MP_FILTER"

 --+ H-ATTR-ID = 2043

 --+ ATTR-SYNTAX = 127 "CMIS-Filter"

 --+ VALUE-NUMBER = 0

 ,

 modificationList [12] IMPLICIT SET OF

 --+ CL-NAME = Modification

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_MODIFICATION"

 --+ H-CL-ID = 2040

 SEQUENCE { modifyOperator [2]

IMPLICIT ModifyOperator DEFAULT replace

 --+ ATTR-NAME = modify-Operator

 --+ H-ATTR-NAME = "MP_MODIFY_OPERATOR"

 --+ H-ATTR-ID = 2060

 --+ ATTR-SYNTAX = 10 "Modify-Operator"

 --+ VALUE-NUMBER = 0

 ,

 attributeId AttributeId

 --+ ATTR-NAME = attribute-Id

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"

 --+ H-ATTR-ID = 2017

 --+ ATTR-SYNTAX = 127 "Attribute-Id"

 --+ VALUE-NUMBER = 1

 ,

 attributeValue ANY DEFINED BY attributeId

 --% ANY_TABLE_REF(AttributeTableMod.AttributeTypes)

%-- OPTIONAL -- absent for setToDefault

 --+ ATTR-NAME = attribute-Value

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_VALUE"

 --+ H-ATTR-ID = 2022

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 0

 }

 --+ ATTR-NAME = modification-List

 --+ H-ATTR-NAME = "MP_MODIFICATION_LIST"

 --+ H-ATTR-ID = 2059

 --+ ATTR-SYNTAX = 127 "Modification"

 --+ VALUE-NUMBER = 2

 }

SetInfoStatus::= --+ CL-NAME = Set-Info-Status

 --+ CL-TYPE = 0

 --+ H-CL-NAME = "OMP_O_MP_C_SET_INFO_STATUS"

 --+ H-CL-ID = 2051

 CHOICE { attributeError [0] IMPLICIT AttributeError

 --+ ATTR-NAME = attribute-Error

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_ERROR"

 --+ H-ATTR-ID = 2016

 --+ ATTR-SYNTAX = 127 "Attribute-Error"

 --+ VALUE-NUMBER = 0

 ,

 attribute [1] IMPLICIT Attribute

 --+ ATTR-NAME = attribute

 --+ H-ATTR-NAME = "MP_ATTRIBUTE"

 --+ H-ATTR-ID = 2015

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 0

 }

SetListError::= --+ SUPER-CLASS = Set-List-Error

 --+ CL-NAME = CMIS-Set-List-Error

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_SET_LIST_ERROR"

 --+ H-CL-ID = 2028

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

260 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

--+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 setInfoList [6] IMPLICIT SET OF SetInfoStatus

 --+ ATTR-NAME = set-Info-List

 --+ H-ATTR-NAME = "MP_SET_INFO_LIST"

 --+ H-ATTR-ID = 2071

 --+ ATTR-SYNTAX = 127 "Set-Info-Status"

 --+ VALUE-NUMBER = 3

 }

SetResult::= --+ SUPER-CLASS = Set-Result

 --+ CL-NAME = CMIS-Set-Result

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_CMIS_SET_RESULT"

 --+ H-CL-ID = 2029

 SEQUENCE { managedObjectClass ObjectClass OPTIONAL

 --+ ATTR-NAME = managed-Object-Class

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"

 --+ H-ATTR-ID = 2057

 --+ ATTR-SYNTAX = 127 "Object-Class"

 --+ VALUE-NUMBER = 0

 ,

 managedObjectInstance ObjectInstance OPTIONAL

 --+ ATTR-NAME = managed-Object-Instance

 --+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"

 --+ H-ATTR-ID = 2058

 --+ ATTR-SYNTAX = 127 "Object-Instance"

 --+ VALUE-NUMBER = 0

 ,

 currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

 --+ ATTR-NAME = current-Time

 --+ H-ATTR-NAME = "MP_CURRENT_TIME"

 --+ H-ATTR-ID = 2027

 --+ ATTR-SYNTAX = 24

 --+ VALUE-NUMBER = 0

 ,

 attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

 --+ ATTR-NAME = attribute-List

 --+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"

 --+ H-ATTR-ID = 2021

 --+ ATTR-SYNTAX = 127 "Attribute"

 --+ VALUE-NUMBER = 2

 }

SpecificErrorInfo::= --+ CL-NAME = Specific-Error-Info

 --+ CL-TYPE = 3

 --+ H-CL-NAME = "OMP_O_MP_C_SPECIFC_ERROR_INFO"

 --+ H-CL-ID = 2052

 SEQUENCE { errorId OBJECT IDENTIFIER

 --+ ATTR-NAME = error-Id

 --+ H-ATTR-NAME = "MP_ERROR_ID"

 --+ H-ATTR-ID = 2033

 --+ ATTR-SYNTAX = 6

 --+ VALUE-NUMBER = 1

 ,

 errorInfo ANY DEFINED BY errorId --% ANY_TABLE_REF(ParameterTableMod.

 ParameterTypes)

 --+ ATTR-NAME = error-Info

 --+ H-ATTR-NAME = "MP_ERROR_INFO"

 --+ H-ATTR-ID = 2034

 --+ ATTR-SYNTAX = 8

 --+ VALUE-NUMBER = 1

 }

END -- CMIP definitions

Appendix B. ASN.1 specification of the basic CMIP strings 261

262 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix C. Error codes sent by CMIP services

This appendix includes descriptions of error codes from ACYAPHDH, which is

shipped in the AMACLIB data set of the SYS1.MACLIB data set. These errors can

be received in the following:

v MIB.ServiceError strings

v CMER VTAM internal trace (VIT) entries

MIB.ServiceError error codes

These errors can be received in MIB.ServiceError strings.

0 (Indicates success.)

Explanation: This is used to denote normal, correct processing.

Action: None, everything is working correctly.

7 MB_ERR_ALLOC

Explanation: An attempt was made to allocate memory for the processing of a message. The operating system

returned an error. The platform will halt processing of this message and attempt to recover. This message will be lost.

If the condition was transient, all later messages may work correctly.

Action: This should occur only if the system is reaching a private or common storage area (CSA) storage limit. If

this is encountered and does not seem to be transient, you will need to increase the limit causing the problem. If this

error is received by the application program from an API function and there is a corresponding REQS record in the

VIT with a nonzero return code, the LPBUF pool is not large enough and should be increased.

8 PROGRAM_CHECK

Explanation: A condition that should not be able to happen has occurred.

Action: Call IBM Service. Please provide the error log and as much information about what was being processed as

possible. This includes:

v The trace, if one exists

v The message being processed

v The set of instantiated objects

v The list of associations

v The set of outstanding CMIP operations

250 AUTHENTICATION_FAILED

Explanation: The association could not be established due to security.

Action: Consult the directory definition file on both systems to resolve inconsistencies.

251 AUTHENTICATION_INFO_MISSING

Explanation: Either data encryption standard (DES) based security or application-program-to-application-program

security is required. The association could not be established due to security.

252 AUTHENTICATION_MECH_UNKNOWN

Explanation: There is a mismatch in the ASN.1 for the association request between the two systems.

Action: Call IBM Service.

© Copyright IBM Corp. 1995, 2005 263

300 BER_BAD_TYPE

Explanation: The encode/decode functions of CMIP services were called to parse a message. They were told to

parse it using the syntax defined as an identified module and type. The module is one that is loaded, the type name

is not.

Action: If the message being processed is a CMIP message, and the application program uses only

MIBSendCmipRequest and MIBSendCmipResponse, call IBM Service. If the message being parsed was one that was

passed to the platform with MIBSendServiceRequest or MIBSendRequest, correct the type name in the message to be

one that is contained in the indicated module.

301 BER_BAD_MODULE

Explanation: The encode/decode functions of CMIP services were called to parse a message. They were told to

parse it using the syntax defined as an identified module and type. The module is one that is not loaded.

Action: If the message being processed is a CMIP message, and the application program uses only

MIBSendCmipRequest and MIBSendCmipResponse, call IBM Service. If the message being parsed was one that was

passed to the platform with MIBSendServiceRequest or MIBSendRequest, correct the module name in the message.

302 BER_NULL_TYPE

Explanation: The portion of CMIP services that calls the encode/decode functions passed in a NULL type name to

be processed.

Action: Call IBM Service.

303 BER_NULL_MODULE

Explanation: The portion of CMIP services that calls the encode/decode functions passed in a NULL module name

to be processed.

Action: Call IBM Service.

304 BER_NULL_STRING

Explanation: The string passed to the encode/decode component of CMIP services was NULL.

Action: Call IBM Service

305 BER_NULL_STRUCT

Explanation: The data structure passed to the encode/decode component of CMIP services to contain the result was

NULL.

Action: Call IBM Service.

306 BER_BAD_METATABLE

Explanation: The ASN.1 data set is not correct.

Action: Reload the ISTASN1 data set from the distribution media.

307 BER_UNKNOWN_TYPE

Explanation: The data type derived for a node in the tree constructed while parsing a message is unrecognized.

Since these are the base types defined in ASN.1. this should not happen.

Action: Call IBM Service.

264 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

308 BER_UNKNOWN_MEMBER

Explanation: While processing a SET or SEQUENCE, the encode/decode component of CMIP services encountered

an element that did not belong in the SET or SEQUENCE.

Action: If this occurred while processing a string value generated by the application, correct the application

program to send a valid value. If this occurred while processing a received BER buffer from a peer entity, the

syntaxes on the two systems do not match. You will need to analyze the differences, determine which version is

correct and load the corrected syntaxes on one or both systems.

309 BER_UNKNOWN_ALTERNATIVE

Explanation: While processing a CHOICE, the encode/decode component of CMIP services encountered an element

that did not represent one of the valid alternatives for the CHOICE.

Action: If this occurred while processing a string value generated by the application, correct the application

program to send a valid value. If this occurred while processing a received BER buffer from a peer entity, the

syntaxes on the two systems do not match. You will need to analyze the differences, determine which version is

correct and load the corrected syntaxes on one or both systems.

310 BER_NO_END_PARENTHESIS

Explanation: While parsing the string message from an application program CMIP services determined that there

should have been a closing parenthesis at the indicated location in the string. This represents the end of a SET,

SEQUENCE or CHOICE.

Action: Correct the string message.

311 BER_NO_START_PARENTHESIS

Explanation: While parsing the string message from an application program CMIP services determined that there

should have been an opening parenthesis at the indicated location in the string. This represents the beginning of a

SET, SEQUENCE or CHOICE.

Action: Correct the string message.

312 BER_NO_MORE_STRING

Explanation: Additional information was expected in the string buffer. The buffer terminated prematurely. There

were either missing mandatory elements or (at least) some missing closing parentheses in the string.

Action: Correct the string value.

313 BER_PARSE_ERROR

Explanation: An error occurred during the parsing of the message. The message is invalid. This error is only issued

when no more specific error is encountered.

Action: Correct the string value.

314 BER_IMPLICIT_CHOICE

Explanation: While parsing the string message the encode/decode component of CMIP services encountered an

IMPLICIT CHOICE. This is not legal in ASN.1. This should have been caught and converted to an EXPLICIT

CHOICE by the ASN.1 compiler.

Action: Correct the string value.

315 BER_CANNOT_RESOLVE

Explanation: An ANY DEFINED BY was encountered for which an ANY TABLE was defined. This table defines all

of the values that will be understood for ANY DEFINED BY resolution. The table did not include the value provided.

Action: Correct the value in the string or add the value to the ANY DEFINED BY table.

Appendix C. Error codes sent by CMIP services 265

316 BER_NEED_LABEL

Explanation: Either a CHOICE was encountered where the user tried to omit the label of the chosen alternative, or a

SET was encountered in which the user failed to specify the label of an element. Both of these require labels in order

to provide unambiguous resolution of the string.

Action: Add the required label to the string.

317 BER_MISSING_MEMBER

Explanation: A mandatory element was omitted from a SET or SEQUENCE, or the label for the mandatory element

was misspelled.

Action: Correct the string.

319 BER_NO_PARENT

Explanation: In order to resolve an ANY DEFINED BY it is necessary to find the element of the syntax that contains

the value to be used to do the resolution. Since ASN.1 requires that this be a mandatory member of the same

SEQUENCE, the parsing code goes to the “parent” of the ANY DEFINED BY and searches for the resolution node.

The ANY DEFINED BY did not contain a valid reference to a parent.

Action: Call IBM Service.

320 BER_BAD_DN_PARSE

Explanation: While parsing a DistinguishedName some kind of error occurred. This error will be logged before the

log of BER_BAD_DN_PARSE. This error serves to narrow the investigation to a DN if the problem is difficult to

isolate.

Action: See the previously logged errors and fix the error in the syntax of the name.

321 BER_BAD_RESOLUTION_NODE

Explanation: There are only two data types that can be used to provide resolution for an ANY DEFINED BY. These

are INTEGER and OBJECT IDENTIFIER. A case was found while processing this message where the element of the

syntax being used for ANY DEFINED BY resolution was another data type.

Action: Correct the syntax of the resolution node in the ASN.1 syntax. If the syntax is determined to be correct, call

IBM Service.

322 BER_MISSING_RESOLUTION_NODE

Explanation: An ANY DEFINED BY was encountered while processing the message that does not reference an ANY

TABLE to allow resolution of data types. If the message is being decoded, any application program to which the

message is sent will receive the contents of this ANY DEFINED BY in BER. This is probably not what the application

program s are expecting.

Action: Add an ANY TABLE REF and ANY TABLE to this syntax in the ASN.1.

323 BER_LABEL_MISMATCH

Explanation: The string being parsed by the encode/decode component of CMIP services contains an initial label

that does not match any of the possible initial labels for the module.type being parsed.

Action: Correct the string.

325 BER_NOT_BOOLEAN

Explanation: The accepted BOOLEAN values are ’TRUE’, ’true’, ’FALSE’, ’false’ and any ASN.1 value references that

are defined to be BOOLEAN values.

Action: Correct the value in the string.

266 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

326 BER_NOT_INTEGER

Explanation: The accepted INTEGER values are composed of digits optionally prepended with a ’+’ or ’-’ sign

character, or a defined ASN.1 value reference.

Action: Correct the value in the string.

327 BER_NOT_REAL

Explanation: The syntax expected for a REAL value is exactly the syntax accepted by the C standard function scanf

using the format string ″%lg″. Anything else will be rejected.

Action: Correct the value in the string.

328 BER_NOT_NULL

Explanation: The accepted NULL values are ’NULL’, ’null’ or a defined ASN.1 value reference to a value of type

NULL.

Action: Correct the value in the string.

329 BER_NOT_BIT_STRING

Explanation: The accepted BIT STRING values are composed of zero or more ’1’ and ’0’ characters or a value

reference to a value of the type BIT STRING.

Action: Correct the value in the string.

330 BER_NOT_HEX_STRING

Explanation: The value being parsed as an OCTET STRING was composed of characters other than legal

hexadecimal digits so it was assumed to be a value reference. The value reference was not found.

Action: Correct the value in the string.

331 BER_BAD_HEX_STRING

Explanation: The value specified for an OCTET STRING was not a legal value. It must be an even number of hex

digits.

Action: Correct the value in the string.

332 BER_NOT_OI

Explanation: The value encountered for an OBJECT IDENTIFIER does not conform to the dotted-decimal notation

and is not a value reference. All values for OBJECT IDENTIFIERs must be composed of digits and periods, and they

must contain at least 2 components. Legal values: ’1.3.18.0.2.4.5’, ’1.2’ Illegal values: ’1’, ’joint-iso-ccitt.9.3.2.7.4’

Action: Correct the value in the string.

333 BER_BAD_TIME

Explanation: If a string is being processed, the value specified did not conform to the format specified for times in

the string API documentation. If a BER-encoded buffer is being processed, the value does not represent a valid time

in BER format.

Action: Correct the value in the string.

334 BER_BAD_ENUMERATED

Explanation: The value encountered was not a valid ENUMERATED.

Action: If the value being processed is a string, correct the string. If the value is a BER buffer, the syntaxes

understood by the two systems are different. Align the syntax definitions on the two systems.

Appendix C. Error codes sent by CMIP services 267

335 BER_BAD_PRINTABLE_STRING

Explanation: The value encountered was defined to be a PrintableString. It contained characters that are not allowed

in the specification of the PrintableString type. The allowed values for Printable string are:

A-Z, a-z, 0-9, space, ’\’, ’(’, ’0’, ’+’,

’,’, ’-’, ’.’, ’/’, ’:’, ’=’ and ’?’

Action: Correct the value to be a valid PrintableString.

336 BER_BAD_NUMERIC_STRING

Explanation: The value encountered was not a valid NumericString. NumericStrings can only contain digits and

spaces.

Action: Correct the value to be a valid NumericString.

337 BER_BAD_VISIBLE_STRING

Explanation: The value encountered was defined to be of type VisibleString. It contained one or more characters

that are not allowed in this data type. The allowed characters are: A-Z, a-z, space and punctuation.

Action: Correct the value to be a valid VisibleString.

338 BER_BAD_GRAPHIC_STRING

Explanation: The value encountered for a GraphicString contained a character that is not presently supported by

CMIP services for GraphicString. At the present time the platform only supports the printable characters in a normal

ASCII character set.

Action: Correct the value to be within the set supported by the platform.

339 BER_BAD_GENERAL_STRING

Explanation: The value encountered was not a valid general string.

Action: Correct the value.

340 BER_BAD_IA5_STRING

Explanation: The value encountered was not a valid IA5 string.

Action: Correct the value.

341 BER_DUPLICATE_MEMBER

Explanation: A SET is allowed to contain each element only once. While parsing the message a member was found

twice in the SET.

Action: Correct the value to include only one occurrence of each member in the SET.

343 BER_NOT_STRAIGHT_BER

Explanation: Encoding an ANY is impossible with only the information in the metadata. It might contain a value of

literally any type - each of which would be encoded differently. The ANY type is deprecated and should not be used.

Action: Change the syntax to an ANY DEFINED BY if possible. Avoid the use of the syntax. If you must flow a

value of this syntax, it must be provided in BER format. The BER format is an even number of hex digits surrounded

by <>.

268 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

344 BER_UNRESOLVED_EXTERNAL

Explanation: An imported symbol was not found in the ASN.1 while processing a message. This will not be the case

if CMIP services is initialized normally (all syntaxes are checked for completeness when the platform is initialized if

they are contained in the normal set). If you added syntaxes to the user syntax section of the presentation

initialization file, there may be unresolved externals. These will have been indicated by a warning message when the

platform was started. If you have added syntaxes after initialization, these may not have been complete.

Action: Load additional syntaxes.

345 BER_STILL_MORE_STRING

Explanation: After parsing a message using the syntax information loaded, there was extra data in the buffer. The

buffer must include exactly one syntactic construct - a complete message and no more. This will often happen if a

string value includes too many closing parentheses at the end.

Action: If this is encountered in string processing, correct the string. If it is encountered while decoding a BER

buffer, the syntaxes understood by the two systems is different. Align the syntaxes.

347 BER_DUP_MODULE

Explanation: The ASN.1 module you attempted to load is a duplicate of one already loaded. The name of the file

that contained the duplicate module will be traced.

Action: Reload the ISTASN1 data set from the distribution media.

348 BER_UNRESOLVED_MODULE_REF

Explanation: While trying to resolve all of the imported symbols in the syntaxes loaded an entire module was not

found. All references to it will be unresolved.

Action: Reload the ISTASN1 data set from the distribution media.

349 BER_UNRESOLVED_REF

Explanation: An external reference cannot be resolved in the ASN.1 syntax loaded. The module that was supposed

to contain the type was found, but there was no such type name defined in the module. The list of all of the

unresolved references will be written to the VTAM internal trace.

Action: The external reference that tried to use the type is likely wrong. Verify that you are trying to use a type that

is defined in the module from which you are referencing it.

354 BER_FAILED_SUBTYPE

Explanation: The value provided was not allowed by the subtype specification.

Action: Change the value to be one of the value allowed by the subtype.

356 BER_BAD_CONSTRUCTED

Explanation: An element of the received BER buffer indicated in its tag that the value was a constructed value. The

corresponding syntax loaded in CMIP services is a data type that cannot be constructed. These types are:

v INTEGER

v ENUMERATED

v BOOLEAN

v NULL

Action: Align the syntaxes in use by the peer systems.

Appendix C. Error codes sent by CMIP services 269

357 BER_BAD_PRIMITIVE

Explanation: The value in the BER buffer for an explicit tag is encoded as a primitive type. It is not possible to have

an explicit tag that is primitive since it must contain the other tag and a value.

Action: Align the syntaxes in use by the peer systems. Fix the peer system’s encoding for explicit tags.

358 BER_BAD_INITIAL_OCTET

Explanation: The first octet of a BER buffer received from a peer application program is not correct. It does not

represent a valid value for the data type being decoded.

Action: Align the syntaxes in use by the peer systems. It may be that the peer sent a message that is valid, but not

within the scope of CMIP services.

359 BER_BAD_BOOLEAN

Explanation: A value received from a peer application program was being decoded as a BOOLEAN type. Its length

was not 1 octet, which is required by BER.

Action: Align the syntaxes used by the peer application programs. Correct the encoding performed by the peer

system.

360 BER_BAD_OI

Explanation: An OI value contained in a message being processed by the encode/decode component of CMIP

services is not valid. If the message being processed is a string message from an application program the OI is not a

legal dotted-decimal value. If the message is a BER buffer from a peer application program we have to trust the peer

to have encoded a valid OI (it is only bits, after all). If this happens it will be preceded by one of two messages. One

(PROGRAM_CHECK) indicates that the peer sent us an OI that will take more than 300 bytes to store in the string

form. The other (MALLOC_ERROR) indicates we could not allocate memory.

Action: If the message was a string message, fix the value. If a MALLOC_ERROR happened, solve that problem. If

you need to encode OIs that will be longer than 300 bytes in string form, call IBM Service.

361 BER_BAD_NULL

Explanation: A value for the type NULL contained in the BER buffer is not valid. The length is not zero. The peer

system is not encoding values correctly or the syntaxes understood by the two systems are not the same.

Action: Align the syntaxes. If they are already aligned correct the peer application.

362 BER_EMPTY_BIT_STRING

Explanation: A received BER buffer contained a BIT STRING of length zero. The peer system is not encoding values

correctly or the syntaxes understood by the two systems are not the same.

Action: Align the syntaxes. If they are already aligned correct the peer application program.

363 BER_BAD_PARAMETERS

Explanation: The encode/decode functions in CMIP services were called with an invalid parameter.

Action: Call IBM Service.

375 RDN_SEP_AT_BEGIN_OF_DN

Explanation: An RDN separator (;) was found at the beginning of a short-form DN.

Action: Correct the first character of the short-form DN.

270 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

376 AVA_SEP_AT_BEGIN_OF_DN

Explanation: An AVA separator (=) was found at the beginning of a short-form DN.

Action: Correct the first character of the short-form DN.

377 SPACE_AT_BEGIN_OF_DN

Explanation: A space was encountered at the beginning of a short-form DN. A short-form DN must begin with an

OBJECT IDENTIFIER or a value reference (a label).

Action: Correct the first character of the short-form DN.

378 INVALID_CHAR_AT_BEGIN_OF_DN

Explanation: An invalid character was found at the beginning of a short-form DN. The first character of the

short-form DN was not a digit, an alphabetic character, an RDN separator (;), an AVA separator (=), or a space.

Action: Correct the first character of the short-form DN.

379 RDN_SEP_AT_BEGIN_OF_RDN

Explanation: An RDN separator (;) was found at the beginning of an RDN.

Action: Correct the value of the short-form DN.

380 AVA_SEP_AT_BEGIN_OF_RDN

Explanation: An AVA separator (=) was found at the beginning of an RDN.

Action: Correct the value of the short-form DN.

381 SPACE_AT_BEGIN_OF_RDN

Explanation: A space was found at the beginning of an RDN while parsing a short-form DN.

Action: Correct the value of the short-form DN.

382 INVALID_CHAR_AT_BEGIN_OF_RDN

Explanation: There is an invalid character at the beginning of an RDN in a short-form DN.

Action: Correct the attribute type in the short-form DN.

383 INVALID_ALPHA_IN_INTEGER_VALUE

Explanation: An alphabetic character was found while processing an INTEGER form attribute type in a short-form

DN.

Action: Correct the attribute type in the short-form DN.

384 INVALID_SPACE_IN_INTEGER_VALUE

Explanation: A space was found while processing an INTEGER form attribute type in a short-form DN.

Action: Correct the attribute type in the short-form DN.

385 INVALID_CHAR_IN_INTEGER_VALUE

Explanation: An invalid character was found while processing an INTEGER form attribute type in a short-form DN.

This character was not an alphabetic character, a space or an AVA separator (an equals sign).

Action: Correct the attribute type in the short-form DN.

Appendix C. Error codes sent by CMIP services 271

386 INVALID_SPACE_IN_OI_VALUE

Explanation: While parsing the attribute type in a short-form DN a space was encountered. The only valid

characters are digits and period.

Action: Correct the attribute type in the short-form DN.

387 INVALID_CHAR_IN_OI_VALUE

Explanation: While parsing the attribute type in a short-form DN an invalid character was encountered. The only

valid characters are digits and period.

Action: Correct the attribute type in the short-form DN.

388 INVALID_SPACE_IN_SYMBOLIC_VALUE

Explanation: While parsing an attribute type in a short-form DN, a symbolic value was found that contains a space.

The attribute type must be either a valid OBJECT IDENTIFIER value (in dotted-decimal) or a symbol reference. The

attribute type MUST be immediately followed by an equals sign.

Action: Correct the attribute type in the short-form DN.

389 INVALID_CHAR_IN_SYMBOLIC_VALUE

Explanation: While parsing an attribute type in a short-form DN, a symbolic value was found that contains

characters other than letters and digits. It is possible that the attribute type was supposed to be an OBJECT

IDENTIFIER, but its first character was a letter so it was interpreted as a symbolic value.

Action: Correct the attribute type in the short-form DN.

390 INVALID_CHAR_IN_ATTR_VALUE

Explanation: One of the two following errors occurred while parsing a short-form DN: a character other than the

RDN separator (semi-colon) was found after close quote. A non-printable character was found in a value.

Action: Correct the value for the short-form DN.

391 INVALID_SPACE_IN_ATTR_VALUE

Explanation: A value portion of an RDN in the short-form DN contained a space and the value was not surrounded

by quotes. This is ambiguous; the platform does not know whether the space is part of the value, or merely white

space.

Action: Correct the value of the short-form DN by eliminating the space or surrounding the value in quotes.

392 PREMATURE_END_OF_DN

Explanation: A short-form DN value was incompletely specified. A short-form DN must be composed of complete

RDNs. Each RDN must include a type (OI), an equals sign and a value. This may have occurred due to a dangling

semicolon at the end of the name, or it may be due to an RDN with a type but no value.

Action: Correct the value of the short-form name.

393 INVALID_SPACE_AT_END_OF_RDN

Explanation: While parsing a short-form DN, CMIP services found a space immediately following the RDN

separator (the semi-colon). This is not allowed. This must be the beginning of the next object identifier and object

identifiers cannot contain spaces.

Action: Correct the name value by deleting any spaces in the OI portions of all RDNs.

272 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

394 BOTH_QUOTE_TYPES_USED

Explanation: A short-form DN value was contained both kinds of quotes and the attempt to surround it with quotes

(during tranformation to long-form) failed.

Action: Correct the value of the short-form name.

400 REPL_ERR_INVLD_VERBCODE

Explanation: This indicates that a message is being passed through CMIP services which is not of a known type. In

general, CMIP services expects CMIP messages or a small handful of internal utility messages. The message that

CMIP services just received was not one of the types that the code can process.

Action: Call IBM Service.

401 REPL_ERR_MISSING_ASN1_TREE

Explanation: This indicates that a message was received that was basically valid (i.e. CMIP services recognized the

message type and a couple of header fields), but the ASN.1 parse tree (which is required for all processing) was

missing from the message. Processing on this message cannot continue.

Action: Call IBM Service.

402 REPL_ERR_OBJCLASS_MISSING

Explanation: The object class is a required field in virtually all CMIP messages. If the CMIP message that CMIP

services is processing requires an object class and one is not present, this error will be logged. The fact that a

required attribute is missing should have been noticed prior to CMIP services receiving the message, therefore this

indicates an internal error.

Action: Call IBM Service.

403 REPL_ERR_OBJCLASS_INVALID

Explanation: The value of the managed object class component in the message is not recognized as a valid value.

This can either mean that the valid GDMO definition has not been loaded by CMIP services, or a truly invalid value

was specified.

Action: Correct the object class.

404 REPL_ERR_OBJINST_MISSING

Explanation: This indicates that either a CMIP message that requires the managed object instance component did

not have one, or (more likely) that a locally generated request that requires the managed object instance attribute did

not specify one.

Action: Include a valid managed object instance in the request.

405 REPL_ERR_OBJINST_INVALID

Explanation: This indicates that the specified managed object instance is in an invalid format and could not be

encoded. There are a number of cases where this can occur:

v During CMIP message processing

v During processing of a locally generated request

Action: Verify the specified managed object instance against the associated naming rules in the name bindings used

to construct the name.

406 REPL_ERR_DUPLICATE_OBJINST

Explanation: This indicates that either a CMIP message was received which tried to create an instance that already

exists, or a local registration was attempted for an instance that already exists.

Appendix C. Error codes sent by CMIP services 273

407 REPL_ERR_NO_SUCH_OBJINST

Explanation: This indicates that the managed object instance specified in the CMIP message or local request could

not be found in the current instance tree. This could mean that some of this instances parents were not present in the

tree either.

408 REPL_ERR_MOI_OC_MISMATCH

Explanation: During the processing of a non-create CMIP message CMIP services determined that the managed

object class specified in the message was not the actual class object identifier (2.9.3.4.3.42), nor the actual managed

object class of the specified instance, nor one of the allomorphic object classes of the specified instance.

Action: Change the original CMIP request to either 2.9.3.4.3.42 or to a correct managed object class for the specified

managed object instance.

409 REPL_ERR_NAME_CREATE_FAILED

Explanation: An error occurred creating an object instance.

Action: Look at CMER records in the VTAM internal trace for additional information.

410 REPL_ERR_GDMO_FILE_BAD_VERS

Explanation: This indicates that CMIP services attempted to load an initialization file with a version number

different from the version currently implemented in CMIP services.

Action: Reload the ISTGDMO data set from the distribution media.

411 REPL_ERR_NOTHING_TO_DELETE

Explanation: This indicates that the delete was directed at a specific managed object, but that managed object

(which exists) cannot be deleted for some reason. The main reasons for this are all related to name binding rules. The

managed object instance may not be deleteable, or it might only be deleteable if it contains no instances (and does

contain instances), or it should delete contained instances but one or more of them is not deleteable.

Action: Verify the name binding rules for the managed object instance that was to be deleted to determine why the

instance could not be deleted. You might need to specify a scope in order to delete the whole sub-tree. Perhaps you

shouldn’t be attempting to delete this instance at all.

412 REPL_WRN_OBJCLASS

Explanation: This indicates that one or more of the object classes that were specified in the list of allomorphs or

create handlers on a local registration are either unknown (invalid) or do not allow creates (for create handler list).

Action: During run time the application program should determine if the object classes that were rejected are a

problem. If so, the object should probably be deleted. If it is not a problem, nothing needs to be done since the object

was registered without the erroneous classes. For future runs the application program code should be fixed to use a

valid set of managed object classes. This means that the managed object class object identifiers should all be loaded

in the CMIP services initialization file, and that all of the managed object classes specified in the create handlers list

should be createable.

413 REPL_ERR_ALREADY_AN_STM

Explanation: This indicates that during the final phase of registration for a new instance, which was requesting to

be a subtree manager, a parent instance was found which was already a subtree manager. Nested subtree managers

are not legal.

Action: You should check to see if the parental subtree manager is one you expected to be there. If it is, then you

either need to move the new subtree manager to a new location (or don’t register it as a subtree manager). If the

existing subtree manager is not supposed to be there, try to figure out how it got there and get rid of it.

274 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

414 REPL_ERR_INVLD_STM_CHILD

Explanation: Once a subtree manager has registered control of a portion of the naming tree, only instances

registered over the same application program connection are allowed on that subtree. If an instance from another

application program connection tries to register under a subtree reserved by a different application, the new

registration will be refused.

Action: Do not attempt to register a new instance under some other application program’s subtree.

415 REPL_ERR_SCOPES_TO_NOTHING

Explanation: This indicates that there was a scoped message which could have addressed multiple instances but in

the end addressed none. The list could be pared down due to name binding rules (for deletes), or access control.

Action: If there were instances that you wanted this to be sent to, consider altering the scope to try to include the

instances. Perhaps you should re-evaluate to determine if you are actually able to address the instances that you were

trying to.

416 REPL_ERR_INVALID_SCOPE

Explanation: This indicates that either the scope is syntactically incorrect, or that the destination was GlobalRoot

(i.e. a NULL distinguished name) and the scope included level 0 (level zero does not exist for GlobalRoot scoping).

Action: Compare your scope to the standards. Verify that it does not include level 0 for a GlobalRoot scope and that

it is syntactically correct according to the standards.

417 REPL_ERR_COMMITDN_NOTIN_LIST

Explanation: This indicates that an attempt was made to process an instance which was thought to be pending

registration (either to complete the registration, or to terminate the registration). This instance was not found on the

list of pending creations.

Action: There is no recovery action for this. It indicates that either invalid instance information was passed in, or

that the pending instance was removed during the cleanup processing of a related instance.

419 REPL_ERR_NO_ONE_2_SEND_CRT_2

Explanation: A create was received for a managed object class which does not have a registered create handler for

it. A create handler is an instance that indicates that it is capable of receiving, processing, and responding to CMIP

create messages for a specified managed object class. If there is no create handler registered for a specified managed

object class, CMIP services does not know where to send the create for processing.

Action: If you do not wish to handle creations for the specified managed object class, then nothing needs to be

done. If you would like to be able to accept creates for the specified managed object class, then an application

program must register an instance with CMIP services as a create handler for the specified managed object class.

420 REPL_ERR_NOONE_2_SEND_EVNT_2

Explanation: An event report or notification was received which had no specific destination associated with it (an

unambiguous AE title) and there was no event handler registered with CMIP services.

Action: Call IBM Service.

421 REPL_ERR_ALREADY_EVNT_HNDLR

Explanation: An attempt was made to register an instance with the event handler capability set, but there is already

an event handler registered. CMIP services only supports the existence of one event handler at a time.

Action: Call IBM Service.

Appendix C. Error codes sent by CMIP services 275

422 REPL_ERR_NAMEBIND_INVALID

Explanation: This indicates that the name binding that was specified was either in an invalid format (primarily this

means length 0), or that the value specified could not be found in the tables of valid name bindings. The tables are

loaded by CMIP services at initialization time.

Action: Check to make sure that a valid name binding value was specified.

424 REPL_ERR_CRT_FAIL_NB

Explanation: Either the name binding that was specified does not allow creation via CMIP create messages, or there

was no name binding specified and one could not be found that allowed CMIP create messages.

Action: Either specify a different name binding (one that allows CMIP creates), or rethink whether you should be

trying to remotely create an instance of this managed object class.

425 REPL_ERR_CRT_FAIL_NO_NB

Explanation: This indicates that there is either no name binding to create an instance of the specified managed

object class under the managed object class of the specified parent instance, or there is no legal name binding which

has a naming attribute that matches the requested naming attribute of the new instance.

Action: First check that there is a name binding that uses the desired naming attribute, and verify that this name

binding is being loaded in CMIP services initialization file. Second check that the desired name binding allows

creation of an instance of the specified managed object class under the managed object class of the parent. If it

doesn’t, consider picking a different parent, a different managed object class for the new instance, a different name

binding (or perhaps specify a name binding if you were not), or change the attribute type of the final RDN to one

that matches a useful name binding.

426 REPL_ERR_DLT_FAIL_CONTOBJS

Explanation: This indicates that the base instance that this delete was sent to (either no scope, or a base only scope)

only allows deletes if the instance does not contain any child instances - and the instance does contain child

instances.

Action: Either delete all of the kids specifically, or include a scope with the delete in order to wipe out all instances

at and below the base instance.

427 REPL_ERR_DLT_FAIL_TO_DCO

Explanation: This indicates that some instance inside of the sub tree of the base instance cannot be deleted (even

though the base instance’s name binding indicates that it should delete contained instances). This could be because of

access control, or because the name binding of the child instance does not allow deletes in some way (no deletes at

all, only if no contained objects and it contains objects).

Action: Try deleting the child instances individually, or with a scope that includes the whole subtree.

428 REPL_ERR_DLT_FAIL_NB

Explanation: This indicates that the instance is not allowed to be deleted by use of CMIP delete messages. The

name binding indicates that this instance cannot be deleted.

Action: You cannot delete the specified instance. Perhaps the instance should not deleted, or perhaps it should have

been created with a different name binding.

429 REPL_ERR_NO_LOCALDN

Explanation: A CMIP message was sent with the local DN form of distinguished name specified, but there is no

instance registered as a local DN handler for the AE title of the association that this message was received over. Local

instances can register with CMIP services indicating that their distinguished name can be used as the initial RDNs for

any local DN form message received over an association with a specified AE title.

Action: Either a local DN handler should be registered for the desired AE title, or the CMIP message should not use

local DN form of distinguished name.

276 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

430 REPL_ERR_DUPLICATE_LDNH

Explanation: An instance tried to register as a local DN handler for an AE-Title that already had another instance

registered as a local DN handler for it. CMIP services does not allow multiple Local DN handlers to register for the

same AE-Title since there is no way to determine which one to choose.

Action: Determine which of the instances should be the Local DN handler and register it first (or only register that

valid one). If you don’t care about receiving the error message, but want to make sure that there is a Local DN

handler for the AE-Title, then by all means, make as many registration attempts as you want.

431 REPL_REG_CREATED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

432 REPL_CRT_COMPLETED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

433 REPL_REG_COMPLETED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

434 REPL_REG_SUSPENDED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

435 REPL_ERR_ATTRTYPE_MISMATCH

Explanation: The attribute type of the final RDN did not match the object identifier of the naming attribute for the

specified name binding. If you specify a name binding and a full distinguished name (including the new final RDN)

CMIP services checks to make sure that they are internally consistent. Receiving this error indicates that you

provided inconsistent values.

Action: Provide a consistent name binding and distinguished name.

436 REPL_ERR_CANNOT_CHANGE_NB

Explanation: During the first phase of processing for CMIP create requests, a name binding is either specified or

selected for any non-auto instance naming forms of creates. The name binding is specified or chosen based on a

number of factors including the validity of the naming attribute and the name binding’s ability to be created. If this

value is changed in the second phase of create processing to something that changes some of these values (such as

changing the naming attribute), the values may not be legal any more. It is illegal to select a name binding that

would invalidate the instance creation information.

Action: If you must change the name binding value, select a value that uses the same naming attribute, allows

instance creation, and allows the same managed object class to be instantiated under the same parent managed object

class.

439 REPL_ERR_NB_DISALLOWS_NEWOC

Explanation: There are three points to this triangle of validation. Two of these points are fixed. First is the managed

object class of the parent (which is fixed). The second is the name binding (which is also fixed). The third is the

managed object class of the instance being registered (this is what you just tried to change from the original value).

The new managed object class must allow the use of the original name binding to create a new instance of the new

managed object class under an instance of the parents managed object class.

Appendix C. Error codes sent by CMIP services 277

Action: Either use the original managed object class, or pick a managed object class that allows the use of the old

name binding under the existing parent instance.

440 REPL_ERR_SYNC_NOT_SUPPORTED

Explanation: Atomic synchronization is not currently supported by CMIP services. Atomic synchronization is

rejected if that option is specified and the scope of the message includes any children of the

baseManagedObjectInstance. The default for the synchronization field is bestEffort.

Action: Specify bestEffort, remove the synchronization field and allow it to default, or trim the scope to include only

the baseManagedObjectInstance.

500 CRC_ERR_INVLD_VERBCODE

Explanation: This indicates that a message is being passed through CMIP services which is not of a known type. In

general, CMIP services expects CMIP messages or a small handful of internal utility messages. The message that the

CMIP component just received was not one of the types that the code can process.

Action: There is not much that can be done about this. Primarily this means that there was an internal error of some

kind that should be reported back to IBM. Please note all of the information that is logged along with this error code

(as well as any logs immediately before and after this one). CMIP services will attempt to reject this message and

continue processing.

501 CRC_ERR_INVLD_SESSHAND

Explanation: This indicates that somehow the CMIP component received a message that contained a Association or

Session handle which was not a valid value. In most cases this indicates an aborted session, but application program

s are allowed to specify the Association/Session to use for routing the message. This error might be reported because

an invalid value was specified by the application. It is rare that this error is caught in the CMIP component since the

messages pass through other components which validate these fields before it gets to the CMIP component.

Action: If the application program selected a bad value, the application program should be fixed. If the application

program s value was valid or the application program did not specify a value, then it is likely that the

Association/Session was aborted. CMIP services will reject this message and continue processing.

502 CRC_ERR_INVLD_INVOKEID

Explanation: This means one of the following:

v A CMIP CancelGet was attempted using an invoke id that was not for a get request.

v The invoke id field was missing from the message.

v The invoke id on a response/confirm does not match any of the outstanding indication/request invoke ids.

There are two primary causes of this set of problems:

v The application program specified a bad invoke id value.

v The Association/Session over which this message was traveling has been aborted.

Action: Determine if this is an application program error (if the application program returns a different invoke id

value than was passed to it in the original message). Fix the application program error if that’s what it was. If the

invoke id value was valid, check to see if there were any error messages logged to indicate that the

Association/Session was aborted. If it was, determine if there is any action you can take to prevent it from

happening again. If there was no error logged, then the Association/Session was aborted in a ″normal way″. CMIP

services will reject the message and continue processing.

503 CRC_ERR_DPLCT_INVOKEID

Explanation: This indicates that an application program (local or remote) tried to re-use an invoke id that has not

yet been completed. CMIP services does not time out invoke ids or re-use invoke ids in any way. But an application

program can specify its own invoke ids, or the remote application program may be using a stack other than CMIP

services which does time out and re-use invoke ids. In this event an outstanding invoke id, which has not yet

completed processing may be re-used by an application. This is an error. The CMIP standards do not provide a way

for invoke ids to be timed out therefore CMIP services does not time them out. The most likely cause of this problem

278 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

is that the local application program is either taking to long to process the message or has an error, and the remote

requester times out the invoke id then tries to re-use it.

Action: First you should check why the application program might be taking too long to answer. Fix this if you can.

Second you can try to extend the timeout length of the remote stack, or eliminate timeouts all together. CMIP

services will reject this message and continue processing.

504 CRC_ERR_INVLD_LINKEDID

Explanation: This indicates that an attempt was made to send a linked reply using an invoke id value (invoke id of

the original request/indication that is) in the response that is not an outstanding invoke id. In other words the

application program is attempting to send linked replies to an unknown request. The most likely cause of this is that

the Association/Session was aborted and the messages on that Association/Session were cleaned up. It is also

possible that the application program filled in the wrong linked id value in the linked response. Note that the linked

id being passed back in the linked reply should be the same value as the invoke id of the original message.

Action: Determine if this is an application program error (if the application program returns a different invoke id

value than was passed to it in the original message). Fix the application program error if that’s what it was. If the

invoke id value was valid, check to see if there were any error messages logged to indicate that the

Association/Session was aborted. If it was, determine if there is any action you can take to prevent it from

happening again. If there was no error logged, then the Association/Session was aborted in a ″normal way″. CMIP

services will reject the message and continue processing.

505 CRC_ERR_UNABLE_TO_BUILD_MSG

Explanation: This indicates that the CMIP component is attempting to construct the final full message (which may

be a reject or error response) to pass on to the next stage of processing, but is unable to complete the construction of

the message. The most likely cause of this is an out of memory condition, but it could also be related to an internal

error. An out of memory condition will be logged in a separate error log message from the component that

discovered it.

Action: Refer to other errors in the trace.

506 CRC_ERR_INVLD_ROERRJ_RCVD

Explanation: This can occur when an application program goes away (primarily a manager application), or an

Association/Session is aborted and one of the partners doesn’t realize it yet. The response is sent and the invoke id is

cleaned up locally, then the partner rejects the message back because the partner is not present. When the invoke id

is looked up, it cannot be found. The condition is logged and the message is ignored (no further processing is

possible). CMIP services will continue processing.

Action: There is no action that can or needs to be taken for this.

507 CRC_ERR_INVLD_CANCELGET

Explanation: The application program issued a CancelGet request for an outstanding invoke id. The outstanding

invoke id was located, however, it was not a Get Verb. This is a violation of the CMISE standard. For a CancelGet

request, the request is rejected back to the application. For a CancelGet indication, an ROER is sent back to the

application program which generated the CancelGet.

Action: Ensure that the application program responsible for generating the CancelGet request is correctly inserting

the invoke id of the Get to be canceled into the CancelGet.

508 CRC_ERR_INVLD_INVOKEID_ON_CANCELGET

Explanation: The application program issued a CancelGet request for an invoke id that could not be located by

CMISE. For CancelGet requests, the request is rejected back to the application. For CancelGet indications, an ROER is

sent back to the application program which generated the CancelGet.

Action: The original Get request may have completed processing before the CancelGet processing had begun.

Appendix C. Error codes sent by CMIP services 279

509 CRC_DELETE_RORJ_RECEIVED

Explanation: Because delete operations cannot be backed out, by the time the CMISE protocol machine receives an

RORJ from the peer protocol machine indicating that the delete response is invalid it is too late to terminate the

delete. So the RORJ is ignored and this message is logged as a warning.

Action: Determine why the peer entity rejected the delete response. No action is required on CMIP services system

logging the warning.

550 SSERR_STATE_INVALID

Explanation: A message was received in the Session Layer that implies a violation of the Session Layer protocol.

This may be any verb received out-of-sequence on an established connection, or any verb other than an S-Connect

received when the identified session does not exist. This will only occur if the peer entity does not implement its

Session protocols correctly, or during the short period while a session is being torn down abruptly. If all

Sessions/Associations are terminated with the graceful Release protocols, this will never occur. When one side of a

communication dies, it is possible that one or more messages will flow from the upper layers of CMIP services before

this is noticed. This will cause the messages that cause this error to be logged to be lost, just as they will be after the

upper layers are notified, since the session/association they need to use is no longer in existence.

Action: No action is required.

551 SSERR_SPDU_INVALID

Explanation: A received SPDU (Session Protocol Data Unit) was invalid. It was not correctly formed according to

the rules for Session Layer headers and data. The peer entity is producing bad SPDUs or the underlying Transport

layer (which is supposed to provide a reliable packet delivery service) has corrupted the message.

Action: This really should never happen. We have never seen it happen with any of the partner implementations. If

it does happen, that data stream will need to be analyzed to determine whether the messages (specifically this one

and the message before and after it) conform to the definition of SPDUs. If they do not, the sender or underlying

transport need to be analyzed to determine the cause. If they do, a trace of the traffic for this connection should be

sent to IBM Service.

552 SSERR_MISSING_PI

Explanation: A mandatory piece of information was omitted from an SPDU. This was either the reason on an

S-Refuse or the Transport disconnect on an S-Abort. In either case the connection will be terminated (as it would

have been if the flows had been correctly formatted). This will be logged to indicate that the peer entity is not

conforming to the defined protocol.

Action: Check the S-Refuse and S-Abort messages produced by the peer. Correct them to conform to the protocol.

The overall result will be correct in either case - a session that should have been terminated will be terminated.

553 SSERR_MISSING_UI

Explanation: An S-Data indication was received from a peer entity that included no data. Since this is an error (and

a waste of the network to be sending packets that contain nothing) the connection will be closed.

Action: Correct the peer application.

554 SSERR_VERB_INVALID

Explanation: A message received by the Session Layer from another layer in CMIP services was invalid. This is an

internal error in CMIP services.

Action: Collect all log information and any re-creation scenario possible and call IBM Service.

280 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

581 SSERR_DUPLICATE

Explanation: A duplicate session identifier has been assigned by the Session Layer. This is an internal error in the

platform.

Action: Call IBM Service.

557 SSERR_USERDATA_SIZE

Explanation: The protocol and profiles specify limits on the size of the user data included in the various Session

Layer PDUs. One of these limits has been violated. Normally this is the limit specified the profile of 10240 octets of

data on an S-Data message.

Action: Decrease the size of the data provided in a single message.

559 SSERR_TDISC_CONGESTED

Explanation: There was insufficient storage available to transmit the data on the connection. Congestion has

occurred locally or remotely. In an attempt to relieve this congestion this message will be discarded and the

connection terminated.

Action: Eliminate some of the traffic between these two systems or increase the resources allocated to

communication between the two systems. This is often a transient error, and merely re-establishing the connection

will work.

560 SSERR_TDISC_UNATTACHED

Explanation: A connection could not be established with the peer system. Either the system is not running, or the

platform is not running on the system.

Action: Check the address included in the log for this error. If it is correct check for connectivity with the system

and make sure a platform is running on the system. If is is incorrect you need to determine why the address was

chosen. It is derived from the destination information contained in the original message. There is a two step mapping

performed - mapping instance name to AE-Title and AE-Title to address. The original name may be incorrect, the

mapping from name to AE-Title may have produced an unexpected AE-Title, or the mapping from the AE-Title to

address may have produced an unexpected result.

561 SSERR_TDISC_ADDRESS

Explanation: The remote address is not recognized for network routing. Either the address is incorrect, or the

system is not running.

Action: Check the address included in the log for this error. If it is correct check for connectivity with the system. If

is is incorrect you need to determine why the address was chosen. It is derived from the destination information

contained in the original message. There is a two step mapping performed - mapping instance name to AE-Title and

AE-Title to address. The original name may be incorrect, the mapping from name to AE-Title may have produced an

unexpected AE-Title, or the mapping from the AE-Title to address may have produced an unexpected result. See the

description of the naming service and directory mappings to correct this.

562 SSERR_VERSION

Explanation: The session version indicator received on an S-Accept is not version 2. Only version 2 is supported.

This is the version specified in the profiles for management systems.

Action: Correct the peer application program to implement or use version 2 protocols for the Session Layer.

563 SSERR_PARTNER_ABORT

Explanation: An abort was received from the peer entity. The session is being torn down. This may represent

normal operation - if the partner issued an abort. This condition is logged to allow problem determination to know

that CMIP services received an S-Abort from the peer system.

Appendix C. Error codes sent by CMIP services 281

564 SSERR_ENCLOSURE_ITEM

Explanation: The enclosure item was found in an SPDU, but segmenting is not supported. This should not happen -

we negotiate away segmentation.

Action: Correct the peer application program to eliminate segmentation.

568 MD_ERR_BAD_MDSMU

Explanation: A badly formed MDS-MU was received. The single place that traces this error will also trace the sense

code (what was wrong with the MDSMU) and the entire MDSMU trace.

Action: Fix the message sent by the partner application.

573 MD_ERR_SNACR_BEING_SENT

Explanation: An SNA condition report is being sent to the partner application program indicating an error has

occurred. The log will include the sense code of the error and the SNA condition report (SNACR) being sent to the

partner.

Action: Correct the condition indicated by the sense code.

574 MD_ERR_SNACR_RECEIVED

Explanation: MDS interface received a SNACR. The sense code and SNACR are included in the log.

Action: Analyze the sense code and SNACR to determine what error has occurred in the underlying SNA transport.

578 SSERR_GIVE_TOKEN_NO_DATA

Explanation: A Session Give Token PDU was received with no data following it. This is invalid for the kernel of the

Session Layer.

Action: Correct the peer application.

802 ACF_EVENT_LOOP

Explanation: Sending the event to the indicated AE-Title would cause an infinite loop in event processing. It is not

being sent. This event report attempted to use an association that is local. This would cause the event to be routed

back to CMIP services for processing causing an infinite loop. The destination of an EFD must contain either the

name of a local instance or the AE-Title of a remote AE.

Action: Change the destination on the EFD to represent a local instance or a remote AE.

803 ACF_INVALID_ASSOC_ID

Explanation: A message was received by CMIP services from one of its application programs. This message

included an association identifier (either because it was a response or because the initiator wished to use a specific

association for the request). The association identifier does not represent a currently active association, so the message

cannot be sent. This may have occurred because:

v The application program used an invalid handle that never represented a valid association.

v The application program is trying to use the same association for all of its requests and the association has been

terminated.

v The application program is attempting to respond to an indication and the association terminated between the time

the indication was received and the response was sent.

Action: For responses, use the correct association handle, exactly the information provided in the source of the

indication. For requests use normal routing (do not include an association handle) or correct the handle value.

282 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

806 ACF_INVALID_USER_ID

Explanation: An object asked to terminate an association which was started by another object explicitly. This is not

allowed. When an object asks to start an association using the ACF.Associate message and that object has registered

as an AE, the association is reserved for its use. No other object will be allowed to use it or terminate it.

Action: Send the termination request from the correct object.

807 ACF_RSP_BUILD_SEND_FAILED

Explanation: A message could not be built because the ASN.1 data sets are incorrect.

Action: Reload the ISTASN1 data set from the distribution media.

808 ACF_ERR_KILL_LOC_ASSOC

Explanation: The association is used to provide local (logical) connectivity to local Application Entities. They are

automatically established and terminated when Application entities are registered and terminated. These associations

do not represent any real network resources, so there is no reason to terminate them.

Action: Do not try to terminate these associations.

812 ACF_BAD_AE_TITLE_FORMAT

Explanation: The AE-Title provided as the value for CMIP services could not be encoded or processed by the

current set of ASN.1 definitions.

Action: Reload ISTASN1 from the distribution media.

814 ACF_CANNOT_FIND_INST

Explanation: The instance name provided with this message (in the baseManagedObjectInstance field of most CMIP

requests) cannot be resolved into a potential serving AE-Title, so CMIP services does not know where to send the

message.

Action: Possible actions include:

v Correct the instance name if it is incorrect.

v Add an entry to define a mapping for this name to AE-Title in the directory definition file and restart the platform.

v Add an explicit AE-Title as the destination of the request.

v Add an explicit association handle as the destination of the request.

815 ACF_NO_DESTINATION

Explanation: This error will be returned if a message does not include any of the following types of destination

information:

 An association handle

 An AE-Title

 A DistinguishedName

 An instance name in the CMIP message

The only way this should be possible is if the request is sent to ’GlobalRoot’ (an instance name with no RDNs) and

no other information is provided to direct the message to the correct system.

Action: Put some type of destination information in the message. If this CMIP message is trying to use ’GlobalRoot’,

you must provide one of the other types of destination. This is the only case where additional destination

information is required.

Appendix C. Error codes sent by CMIP services 283

817 ACF_NO_ASSOC_TEMP

Explanation: The required association could not be established. There are several possible causes for this, each of

which will cause additional errors to be logged. The causes include:

 There is no CMIP platform running on the designated target machine.

 The address does not represent a real machine at all.

 There is a CMIP platform running but its capabilities do not match those in use by this platform.

Action: Look for other trace entries to determine the real cause of the error.

819 ACF_EMPTY_DEF_LIST_RESULT

Explanation: While trying to negotiate a common set of syntaxes with a potential peer system we discovered that

the two systems have NO syntaxes in common. Since this will not result in any communication, we will not establish

the association. This should not ever happen if we are actually trying to connect to another system that implements

CMIP. It could happen if we mistakenly try to connect to an implementation of X.500 or X.400, so we really do not

want such an association to be established.

823 ACF_QUEUED_MESSAGE

Explanation: This should not occur in an error message. It may occur in a trace. This is the normal mode of

operation when a new association needs to be established.

824 ACF_ASSOC_ID_WRAP

Explanation: The identifiers assigned to associations have just wrapped. Unpredictable behavior may occur if there

are collisions. Collisions are extremely unlikely since they are assigned sequentially from a 32bit space. If they do

collide the platform will begin to route messages incorrectly.

Action: Restart CMIP services.

826 ACF_TOO_MANY_LOCAL_ASSOCS

Explanation: Local associations are limited to 100 at any given time.

Action: Possible actions:

v Terminate a local association.

v Terminate a local AE.

827 ACF_DUPLICATE_AE

Explanation: An attempt was made to register a local AE-Title for an object instance. This AE-Title is already in use

by another instance on this system.

Action: Change the AE-Title or terminate the previous object using this AE-Title.

828 ACF_REMOTE_AE

Explanation: An application program attempted to register a local AE-Title that is identical to the AE-Title currently

being used by a remote Application Entity.

Action: Choose a different AE-Title, or terminate the associations with the remote entity (and make sure it never

re-connects using the same AE-Title).

829 ACF_INVALID_STATE_TO_RELEASE

Explanation: An application program attempted to cause CMIP services to Release an association. When the

association was checked it was determined that it was not in the associated state. A Release message can only be sent

when an association is in the ASSOCIATED state without causing a protocol violation.

Action: If you really want to terminate the association, use an Abort instead of Release.

284 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

830 ACF_INVALID_AE

Explanation: An instance was attempting to register itself as the local DN handler for all messages that are received

on associations to a specific AE-Title. The AE-Title it specified is not one of those currently supported by the local

system, so it will never be used.

Action: Choose the correct AE-Title (possibly &AET) or register the AE-Title and retry the request.

831 ACF_BAD_P_MODE

Explanation: Only normal mode Presentation layer protocols are supported by CMIP services. The peer entity tried

to establish a connection using some other mode.

Action: Change the peer to use normal mode Presentation Layer protocols.

832 ACF_BAD_P_PROTOCOL_VERSION

Explanation: Only version 1 Presentation layer protocols are supported by CMIP services. The peer entity tried to

establish a connection using some other version.

Action: Change the peer to use version 1 Presentation Layer protocols.

833 ACF_BAD_CMIP_VERSION

Explanation: This implementation only supports version 2 of the CMIP protocol.

Action: Use CMIP version 2 for management flows. Change the peer to negotiate version 2 of CMIP.

834 ACF_BAD_APPL_CONTEXT

Explanation: CMIP services supports a specific set of application program contexts to assure the platform that the

peer is actually talking the same language. The supported contexts are:

 ISO

 CCITT

 NM Forum

Action: Try to connect from CMIP services to the peer - maybe it will accept the ISO context (or the appropriate

CMOT context if using CMOT). Adapt the peer to support one of these protocols. Support for additional contexts

should not be necessary - these are all of the common contexts for OSI management. If additional contexts are

necessary, contact IBM Service

835 ACF_NO_APPL_CONTEXT

Explanation: The A-Associate indication received form a peer Application Entity did not include any application

program context. This does not allow us to confirm that it is actually using CMIP, or even how to resolve the details

of the A-Associate indication. This association will be rejected.

Action: Establish the association to the peer (maybe it will accept our context) or adapt the peer to send an

application program context CMIP services supports.

836 ACF_NO_APPL_INFO

Explanation: The platform received a P-Connect-Indication that contained no application program s layer

information. There was NO A-Associate-Indication contained in the PDU. Since this would not result in a usable

connection, the connection will be rejected.

Action: Establish the association to the peer (maybe it will accept our A-Associate) or adapt the peer to send an

A-Associate on the P-Connect.

Appendix C. Error codes sent by CMIP services 285

838 ACF_WRONG_AE_TITLE

Explanation: The A-Associate-Indication provided a value for the called-AP-Title and qualifier that does not match

the local values. The A-Associate could be rejected, but it will be accepted. We will merely respond with the local AE

information in the responding AP-Title and responding AE-qualifier. The peer can abort the association if it sees fit.

Action: None - the association was established.

840 ACF_NO_AE_QUALIFIER

Explanation: This indicates (internally) that an A-Associate-Indication was received that contained only an AP-Title,

and no AE-Qualifier. The association will be accepted.

Action: No action is required unless this error code is externalized.

900 MB_ERR_PROCFAIL_NOT_OPTIONAL

Explanation: Although the parameter for an ROER-processingFailure is specified as OPTIONAL in the CMIP

standard, the argument for an ROIV-m-Linked-Reply is not OPTIONAL. Because CMIP services may need to

reformat an application’s processingFailure CMIP error from an ROER to an ROIV-m-Linked-Reply, CMIP services

requires the processingFailure argument to be specified.

Action: Correct the application program to specify a processingFailure argument in all cases. The following is an

example of a processingFailure argument that specifies the genericSpecificError: ″(&OC, (distinguishedName &DN),

(1.2.124.360501.9.24, NULL))″

901 MB_ERR_COMPXLIM_NOT_OPTIONAL

Explanation: Although the parameter for an ROER-complexityLimitation is specified as OPTIONAL in the CMIP

standard, the argument for an ROIV-m-Linked-Reply is not OPTIONAL. Because CMIP services may need to

reformat an application’s complexityLimitation CMIP error from an ROER to an ROIV-m-Linked-Reply, CMIP

services requires the complexityLimitation argument to be specified.

Action: Correct the application program to specify a complexityLimitation argument in all cases. The following is a

minimal example of a complexityLimitation argument which leaves out all the optional members: ″()″

903 MB_ERR_INVALID_TYPENAME

Explanation: An ASN.1 type name was not recognized.

Action: Correct the type name.

904 MB_ERR_NOT_CONNECTED

Explanation: A message was received from an application program that is no longer connected.

Action: Call the MIBConnect function.

914 MB_ERR_DELETE_PROTOCOL_ERROR

Explanation: Various rules limit the responses which an agent is allowed to make in the first phase of a CMIP

delete, when it send the MIB.DeleteResponse syntax to CMIP services. This error, returned to the agent application,

indicates that the response was not allowed. The reason depends on whether the instance is a subtree manager or not

and where the instance falls within the scope of the delete. This error is returned for six distinct conditions:

1. The instance is a subtree manager and is above the scope of the delete and has answered accepted (0).

2. The instance is a subtree manager and is above the scope of the delete and has answered rejected (1).

3. The instance is a subtree manager and is below the scope of the delete and has answered stmChildrenOnly (2).

4. The instance is not a subtree manager and has answered stmChildrenOnly (2).

5. The instance is below the scope of the delete and has answered noOneSelected (3).

6. The instance has not answered with 0, 1, 2, or 3.

Action: Correct the application program ’s delete-handling code. Note that if the object instance is not a subtree

286 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

manager (the normal case), then conditions 1-3 are eliminated as possible causes. Also note that condition 4 does not

specify where the instance is relative to the scope of the delete because non-subtree manager instances are never

allowed to answer stmChildrenOnly. Condition 5 is an error because the filter for the delete is always stripped from

the delete indication before it is delivered to the instances which are below the scope of the delete. Because these

instances did not receive the filter, they cannot possibly have failed to pass it.

918 MB_ERR_INVALID_LINK_ID

Explanation: The value specified on the link identifier parameter does not refer to a valid connection.

919 MB_ERR_INVALID_STATE

Explanation: CMIP services was attempting to write a message to a client application program but determined that

the connection was not in a useable state. The message was not written, and the error was logged. The application

program program was not notified of the error nor was the sender of the request.

Action: The application program should exit and reinitialize.

920 MB_ERR_NOT_REGISTERED

Explanation: The application program has indicated that it has had an unrecoverable error when returning to the

read queue exit routine or the data space is out of storage. The registration will not be allowed.

921 MB_ERR_CMIP_ERR_RESP_ILLEGAL

Explanation: An agent application program attempted to return a CMIP error and CMIP services flagged the

response as illegal because the error code specified in the response is not allowed for indications of the type being

responded to. For example, if an client agent application program returns a getListError for an m-Set indication or an

invalidArgumentValue error for a an m-Create. This error is also returned by CMIP services when an agent responds

to a delete with the syntax MIB.DeleteResponse(1, X, ...) where the X is an error code that is not allowed by the

CMIP standard in response to an m-Delete indication.

Action: Correct the client agent application program to return an error code compliant with the CMIP standard

(Rec. X.711 | ISO/IEC 9596-1 second edition).

922 MB_ERR_CMIP_ERR_RESP_STKCHK

Explanation: An agent application program attempted to return a CMIP error and CMIP services flagged the

response as illegal because the error code specified in the response was checked for by CMIP services when the

indication was processed and was verified at that time not to have occurred. For example, all object classes are

looked up and found in the metadata before the indication is delivered, so the NoSuchObjectClass error cannot occur

subsequently. If an application program attempts to return NoSuchObjectClass, CMIP services rejects the response

with this error code. The other errors which fall into this category are SyncNotSupported and InvalidScope. CMIP

services returns an ROER to all indications that specify a sych other than bestEffort and client agent application

program s will never receive an indication that specifies atomic synchronization. Also all scopes are validated to be

completely syntactically correct before the indication is delivered to the agent application. So these errors are not

allowed by CMIP services. If an agent application program generates these errors, then the agent application program

is in error.

Action: A program ming error exists in the client agent application. Correct the application program to send the

CMIP error that actually occurred.

925 MB_ERR_LOST_CONNECTION

Explanation: The application program has exited.

Action: It should reconnect.

Appendix C. Error codes sent by CMIP services 287

929 MB_ERR_LOCAL_ID_ALREADY_REGISTERED

Explanation: The local identifier is not unique.

Action: Correct the client application program to pass a unique local identifier with each MIBSendRegister API

function call.

931 MB_ERR_SOURCE_NOT_IN_SUBTREE

Explanation: Only instances registered with the SUBTREE_MANAGER or EVENT_HANDLER capabilities are

permitted to use the source override feature on requests and responses. For the EVENT_HANDLER application

program (there may be only one), any distinguished name may be specified as the source, with no restrictions. But

for subtree manager application program s, there is a restriction placed on the distinguished names which may be

specified. The restriction is that the distinguished name must be within the subtree managed by the subtree manager,

i.e. the distinguished name specified as the source must have the distinguished name of the subtree as a prefix. This

error is returned when a subtree manager specifies a source outside its managed subtree.

Action: A programming error exists in the subtree manager application program. Correct the subtree manager

application program.

932 MB_ERR_MAX_OUTSTANDING

Explanation: There are no remaining, unused invoke identifiers on this connection.

Action: Increase the value of the max outstanding invoke identifiers parameter passed to the MIBConnect function.

933 MB_ERR_CMIP_ERR_NOT_STM

Explanation: A client agent application program returned a CMIP error as its response to an indication. In checking

CMIP error responses, CMIP services takes several pieces of information into account. One of them is the

operation-type for the indication (e.g. m-Get, m-Action, etc). Another is the client agent’s capabilities, specifically

whether the instance responding had the SUBTREE_MANAGER capability set when it was registered. This error is

returned to the agent by CMIP services because CMIP services only allows the given CMIP error to be returned by

subtree manager agents. This is because the given error is checked for by CMIP services before the indication is

delivered to the client agent application. Except in the case of subtree managers, CMIP services has already verified

that the error did not occur. Since the agent is not a subtree manager, the agent should not be allowed to return this

error, since it could not have occurred. Had the agent been a subtree manager the error response would have been

allowed, because in that case CMIP services could not have verified ahead of time that the error did not occur. It

should not be inferred from this discussion that the solution is to make the client agent a subtree manager. Instead, it

should be assumed that the client incorrectly detected the error condition signaled by the response, and that the

client’s response is in error.

Action: Correct the client agent application program to return a valid CMIP response or an allowed CMIP error

response.

934 MB_ERR_NOT_SUBTREE_MGR

Explanation: In a CMIP message, the information which determines the source of the message comes from three

places. The CMIP string may specify the distinguished name of the instance sending the request or response. Or, the

string may include the ″&DN″. macro. This is replaced by CMIP services with the distinguished name of the instance

sending the message as identified by the local identifier supplied on the API call. Finally, a subtree manager instance

is allowed to use the ″&DN″ macro and specify a source-override. This results in the distinguished name supplied on

the override being substituted for the &DN rather than the DN of the subtree manager. This error indicates that the

client application program specified a non-null value for the source parameter on a request or response

(MIBSendResponse, MIBSendCmipRequest, MIBCmipRequest, MIBSendCmipResponse, or MIBCmipResponse) but

the managed object instance sending the request or response is not a subtree manager.

Action: Correct the client application. If the application program has been designed and coded to fulfill all the

responsibilities of a subtree manager, then enable the SUBTREE MANAGER on the instance’s MIBRegister call.

Otherwise, do not specify the source parameter on the API function call.

288 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

935 MB_ERR_DIDNT_USE_AMPER_IID

Explanation: An incorrect invoke identifier was used in a CMIP request.

Action: Use the &IID MIB variable to include the new invoke identifier for this request.

936 MB_ERR_CMIP_ERR_NOTASROIV

Explanation: An agent application program attempted to return a response containing a CMIP error. The response is

allowed given the operation value of the request, but CMIP services only supports sending the CMIP error as an

ROER, not as an m-Linked-Reply. This error indicates that in order to deliver the message, the response would have

had to be reformatted as an m-Linked-Reply. Since CMIP services supports sending all errors as linked replies that

can legitimately be returned as linked replies, this error indicates that the error should not have been sent as a

not-last response.

Action: Correct the client agent application program to return the error as a final response.

937 MB_ERR_INVALID_MSG_FORMAT

Explanation: This error is returned when CMIP services cannot parse the module and type or the top-level sequence

of a request or response. Incorrect values in the invoke identifier, operation-value, argument or argument-type labels

can cause this error. Incorrect values in the module and type strings also cause this error.

Action: Correct the string.

938 MB_ERR_EMPTY_ROIV_INVALID

Explanation: CMIP services was processing a client agent response and needed to reformat the response into an

ROIVapdu for transmission as an m-LinkedReply. But the client agent application program did not provide an

argument on the response, so the response cannot be formatted as an ROIV-m-LinkedReply. Because of the possibility

of this failure, and the fact that agent application programs cannot predict whether the reformatting will be required,

it is required that an argument be provided on all responses. This error is only checked when the argument is

actually required, so it may appear to be an intermittent problem to the client agent, nevertheless, it is actually a

consistent problem.

Action: Determine which API function call was used to send the response and correct the client agent application

program to provide an argument on the response in all cases.

939 MB_ERR_INVALID_RESP

Explanation: There are several checks which CMIP services makes to validate an object instance’s response. The

object instance supplies an invokeId, a destination (in the form of an association handle), and a response string. This

error can indicate a number of different failures which all have in common that the response was invalid because

that instance was not allowed to respond to the specified request at the current time. The possible failures are:

v The invoke identifier and association handle did not specify a valid indication (that is, no instance is allowed to

respond to the ″request″, because it does not exist).

v The invoke identifier and association handle specify a valid indication, but the object instance responding is not

allowed to respond to that indication because it was not a recipient of the indication.

v The invoke identifier and association handle specify a valid indication, but the object instance responding is not

allowed to respond to that indication because it has already responded to that indication with a ″final″ response.

v The invoke identifier and associate handle specify a valid delete indication to which the object instance is allowed

to respond, but the instance responded ″out of phase″, either sending a phase-1 response during phase 2 or vice

versa.

v When CMIP services discovers that a manager application program has terminated, CMIP services removes all

indications from that manager from its log. Otherwise valid agent responses to the indication are rejected with this

return code. This is the only case where the client agent application program is not at fault. One possible cause for

this error (in cases 2 and 3) is that the client agent application program specified the wrong local identifier on the

response.

Action: Determine if the manager application program which issued the request terminated before the agent

responded (see case 5 above). If so, then this error may be ignored. Otherwise correct the client agent application

program to respond correctly.

Appendix C. Error codes sent by CMIP services 289

941 MB_ERR_CANCELGET_RESP_INVALID

Explanation: CMIP services application program makes supporting the cancel get operation trivial for agents to

implement by treating it as an unconfirmed request from the agent’s viewpoint. Whenever CMIP services receives an

m-CancelGet it takes care of cancelling the get and responding to the m-CancelGet and sending the

operationCancelled ROER. Agents may either continue to respond to the get as if the cancel get had not been

received (and CMIP services discards these responses) or agents may abort their get and send an operationCancelled

error. Because of this design, agents are not allowed to respond to the m-CancelGet indication, and they receive this

error if they do.

Action: Correct the client agent application program to not respond to m-CancelGet indications.

945 MB_ERR_CONNECT

Explanation: The MIBConnect was not successful. If the error condition indicated by the OPEN ACB error value

parameter can be eliminated, another MIBConnect can be issued.

952 HDR_SYNTAX_ERROR

Explanation: The module and type information that must accompany all messages is wrong. The value provided

either does not contain both a module and type name, separated by a period.

Action: Fix the type reference to be complete. A valid example is: CMIP-1.ROIVapdu.

953 INVALID_HDR_DEST_TYPE

Explanation: The type of the destination (the value for dest-type) contained in the string header is invalid. The only

allowed types are:

v 0: none provided

v 1: association handle

v 2: Distinguished name of an instance

v 3: AE-title of a peer system

Action: Fix the dest-type in the string header.

954 INVALID_HDR_SRC_TYPE

Explanation: The type of the source (the value for src-type) contained in the string header is invalid. The only

allowed types are:

v 0: none provided

v 1: association handle

v 2: Distinguished name of the sending instance

Normally you should be doing one of two things. If this message is a response, the src-type MUST BE 1 - association

handle. If this message is a request, the type should normally be 0. The only time any other value is used is when

the request is coming from a specific instance and you need to provide its name for us to resolve an &DN MIB

variable.

Action: Fix the src-type in the string header.

955 UNRECOGNIZED_HDR_LABEL

Explanation: A label was encountered in the string header that was unrecognized or out of sequence.

Action: If the message was sent using MIBSendRequest or MIBSendResponse, fix the string to align with the

definition of the string header contained in ISTASN1. If the message was sent by CMIP services, or using

MIBSendCmipRequest or MIBSendCmipResponse, call IBM Service.

290 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

956 KEY_IS_NULL

Explanation: While parsing the string an & was encountered. The valid MIB variables are &IID, &OC, &DN, and

>M.

Action: Fix the value to reference a valid MIB variable or avoid the use of a MIB variable or surround the value in

quotation marks.

957 KEY_NOT_FOUND

Explanation: While parsing the string a MIB variable (a value which begins with the character ’&’) was encountered

for which does not exist. The allowed values are &IID, &OC, &DN, and >M.

Action: Fix the value to refer to a valid MIB variable or avoid the use of a MIB variable or surround the value in

quotation marks.

958 MIB_VAR_NOT_LOADED

Explanation: An invalid MIB variable was encountered.

Action: Correct the use of the MIB variable to be one of those defined, or use a real value. If you want the value to

be a string that begins with &, you must surround the value in quotes.

961 LABV_END_QUOTE_NOT_FOUND

Explanation: A string was found that began with a quote (single or double) for which there was no closing quote.

Action: Fix the string value to conform to the rules for construction of string values.

962 LABV_NULL_VALUE

Explanation: CMIP services was provided with an input string that did not include a value. This is a warning that

there was not a value in the string being processed.

Action: This may be working correctly, assuming the input string intended did not include a value. This is unlikely

since normally it is only necessary to parse strings that contain values. Change the string to be a valid value for an

ASN.1 syntax.

963 LABV_INVALID_CHAR_IN_VALUE

Explanation: An invalid character was found in a value in the string being parsed.

Action: Fix the string value to conform to the rules for construction of string values.

964 LABV_INVALID_GROUP_DELIMITER

Explanation: The only characters that are allowed to follow a right parenthesis in a string are comma and right

parenthesis. Something else was encountered.

Action: Fix the string value to conform to the rules for construction of string values.

965 LABV_EMPTY_STRING

Explanation: CMIP services was handed a string with no contents. It did not return any labels or values.

Action: None; you have reached the end of the string. Processing for the string should now terminate. This is

working as designed.

1000 MB_WARN_DATA_SPACE_FULL

Explanation: If using a data space and the data space is out of storage, this warning is returned to remind the

application program that no messages will be returned to this application program. This message will still be routed

to CMIP services.

Appendix C. Error codes sent by CMIP services 291

Action: Remove messages from the data space.

1001 MB_WARN_EXIT_FAILURE

Explanation: If using common storage area storage and the application program has indicated that it has had an

unrecoverable error when returning to the read queue exit routine, this warning is returned to remind the application

program that no messages will be returned to the application program. This message will still be routed to CMIP

services.

Action: The application program should disconnect and connect again.

1002 MB_DATA_ON_DATA_SPACE

Explanation: CMIP services has placed one or more messages in the data space.

Action: Remove messages from the data space.

1004 MB_ERR_INVALID_ARGUMENT

Explanation: The argument parameter was not provided.

Action: Correct the argument.

1005 MB_ERR_INVALID_ARGUMENT_TYPE

Explanation: An incorrect argument type parameter was provided.

Action: Correct the argument type.

1006 MB_ERR_INVALID_ASSOC_HANDLE

Explanation: An incorrect association handle parameter was provided.

Action: Correct the association handle.

1007 MB_ERR_INVALID_SMAE_NAME

Explanation: The value specified for the SMAE name buffer parameter is not valid.

Action: Correct the SMAE name.

1008 MB_ERR_CMIP_SERVICES_INACTIVE

Explanation: CMIP services is inactive.

 If using common storage area storage, the read queue exit routine stops functioning.

 If using data space storage, messages are not put on the data space.

Action: Start CMIP services.

1009 MB_ERR_INVALID_DS_VECTOR

Explanation: The value specified for the data space vector length parameter is valid, but the data space vector

parameter is not provided.

Action: Correct the parameters.

1010 MB_ERR_INVALID_DEST_TYPE

Explanation: An incorrect destination type parameter was passed.

Action: Correct the parameter.

292 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

1011 MB_ERR_INVALID_DIST_NAME

Explanation: An incorrect distinguished name was provided.

Action: Correct the parameter.

1012 MB_ERR_INVALID_MAX_INVOKE_IDS

Explanation: The value specified for the maximum outstanding requests parameter is not valid.

Action: Correct the parameter.

1013 MB_ERR_INVALID_API_LEVEL

Explanation: An incorrect value for the API level parameter was passed.

Action: Correct the parameter.

1014 MB_ERR_INVALID_APPL_NAME

Explanation: The value specified for the application name parameter is longer than 8 characters.

Action: Correct the parameter.

1015 MB_ERR_INVALID_DS_VECTOR_SIZE

Explanation: If the data space vector parameter is specified, the data space vector length must be at least the size of

(ISTRIV10_t), which is the length of the data space vector.

Action: Correct the parameter.

1016 MB_ERR_INVALID_SMAE_NAME_SIZE

Explanation: The buffer sent to the MIBConnect function is too small to accommodate the name of the SMAE. The

actual amount of storage required is returned in the SMAE name length parameter.

Action: Correct the parameter.

1017 MB_ERR_INVALID_INVOKE_ID

Explanation: The invoke identifier parameter was not provided.

Action: Correct the parameter.

1018 MB_ERR_MIBDISCONNECT

Explanation: The MIBDisconnect function was not successful.

Action: If the error condition indicated by the CLOSE ACB error value parameter can be eliminated, another

MIBDisconnect can be issued.

1019 MB_ERR_INVALID_MSG

Explanation: An incorrect message parameter was provided.

Action: Correct the parameter.

1020 MB_ERR_INVALID_OBJECT_CLASS

Explanation: An incorrect object class parameter was provided.

Action: Correct the parameter.

Appendix C. Error codes sent by CMIP services 293

1021 MB_ERR_INVALID_READ_QUEUE_EXIT

Explanation: The read queue exit routine was not provided.

Action: Correct the parameter.

1022 MB_ERR_INVALID_SYSTEM_NAME_SIZE

Explanation: The buffer sent to the MIBConnect function is too small to accommodate the name of the system

object. The actual amount of storage required is returned in the system object name buffer size parameter.

Action: Increase the buffer size.

1023 MB_ERR_INVALID_LOCAL_ID_SIZE

Explanation: The value specified on the local identifier length parameter is outside the acceptable range of 1—8.

Action: Increase the buffer size.

1024 MB_ERR_TRANSMIT

Explanation: An apparent error occurred. Either there is a logic error in VTAM, or the MIBDisconnect function has

been issued, but it has not completed.

Action: Do not use any other services once MIBDisconnect has been issued.

1025 MB_ERR_VTAM_INACTIVE

Explanation: VTAM is inactive.

Action: Start VTAM.

1026 MB_ERR_INVALID_USER_DATA

Explanation: The user data parameter was not provided.

Action: Increase the buffer size.

1027 MB_ERR_INVALID_ERROR_FLAG

Explanation: The CLOSE ACB error value parameter does not point to a valid storage location.

Action: Correct the parameter.

1028 MB_ERR_INVALID_RELEASE_LEVEL

Explanation: The value specified for the VTAM release level parameter is not valid.

Action: Correct the parameter.

1029 MB_ERR_INVALID_PASSWORD

Explanation: The value specified for the password parameter is not between 0 and 8 characters.

Action: Correct the parameter.

1030 MB_ERR_INVALID_CAPABILITY_FLAGS

Explanation: The value specified for the capability flags parameter is not valid.

Action: Correct the parameter.

294 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

1031 MB_ERR_INVALID_TPEND_EXIT

Explanation: The TPEND exit routine is not valid.

Action: Correct the parameter.

1032 MB_ERR_INVALID_LAST_IN_CHAIN_FLAG

Explanation: An incorrect last in chain parameter was provided.

Action: Correct the parameter.

1033 MB_ERR_INVALID_SUCCESS_FLAG

Explanation: An incorrect success parameter was provided.

Action: Correct the parameter.

1034 MB_ERR_INVALID_SYSTEM_NAME

Explanation: The value specified for the system object name buffer parameter is not valid.

Action: Correct the parameter.

1035 MB_ERR_INVALID_CONNECT_OPTIONS

Explanation: The value specified on the connection options parameter is not valid. Specify either

NO_CONNECT_OPTIONS or SHORT_NAMES as the value for the connection options parameter.

Action: Correct the parameter.

1036 MB_ERR_INVALID_NAME_TYPE

Explanation: An incorrect name type parameter was provided.

Action: Correct the parameter.

1037 MB_ERR_INVALID_NAME_BINDING

Explanation: An incorrect name binding parameter was provided.

Action: Correct the parameter.

1038 MB_ERR_INVALID_ALLOMORPHS_COUNT

Explanation: An incorrect allomorphs count parameter was provided.

Action: Correct the parameter.

1039 MB_ERR_INVALID_ALLOMORPHS_ARRAY

Explanation: An incorrect allomorphs array parameter was provided.

Action: Correct the parameter.

1040 MB_ERR_INVALID_CREATE_HANDLERS_COUNT

Explanation: An incorrect create handlers count parameter was provided.

Action: Correct the parameter.

Appendix C. Error codes sent by CMIP services 295

1041 MB_ERR_INVALID_CREATE_HANDLERS_ARRAY

Explanation: An incorrect create handlers array parameter was provided.

Action: Correct the parameter.

1042 MB_ERR_INVALID_LOCAL_ID

Explanation: An incorrect local identifier parameter was provided.

Action: Correct the parameter.

1043 MB_ERR_INVALID_DEST

Explanation: The value of the destination parameter is inconsistent with the value of the destination type parameter.

This return code is returned if, for example, destination type is DS_ASSOC_HANDLE, but destination is NULL.

Action: Correct the parameter.

CMER VIT entry error codes

These error codes can appear only in CMER VIT entries.

151

Explanation: An invalid parameter was received.

Action: No action is required. Other errors logged in CMER VIT entries or sent to an application program may

indicate the cause of the problem.

153

Explanation: An error was encountered by notification services.

Action: No action is required. Other errors logged in CMER VIT entries or sent to an application program may

indicate the cause of the problem.

156

Explanation: A CMIP services dataset could not be opened.

Action: Check the VTAM JCL to ensure that required DD cards are present and point to the correct datasets. Check

the datasets to verify the presence of the required members. Then restart CMIP Services using the MODIFY

VTAMOPTS,OSIMGMT=YES command.

157

Explanation: A CMIP services dataset contains incorrect data.

Action: Reload the CMIP services datasets to ensure that the datasets are not corrupted. Then restart CMIP Services

using the MODIFY VTAMOPTS,OSIMGMT=YES command.

158

Explanation: The directory definition file contained a syntax error.

Action: Correct the directory definition file and restart CMIP services.

159

Explanation: The name attribute in the directory definition file was invalid.

Action: Correct the directory definition file and restart CMIP services.

296 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

161

Explanation: The name attribute in the directory definition file was missing.

Action: Correct the directory definition file and restart CMIP services.

162

Explanation: An attribute in the directory definition file was listed more than once in the same entry.

Action: Correct the directory definition file and restart CMIP services.

166

Explanation: The class attribute in the directory definition file was invalid.

Action: Correct the directory definition file and restart CMIP services.

167

Explanation: A generic error occurred. Other error codes should be traced or returned to the user in a

MIB.ServiceError message.

Action: No action is required. Other errors logged in CMER VIT entries or sent to an application program may

indicate the cause of the problem.

168

Explanation: The class attribute in the directory definition file was missing.

Action: Correct the directory definition file and restart CMIP services.

174

Explanation: A CMIP services dataset contains incorrect data.

Action: Reload the CMIP services datasets to ensure that the datasets are not corrupted. Then restart CMIP Services

using the MODIFY VTAMOPTS,OSIMGMT=YES command.

1051

Explanation: An EFD filter contained too many object classes to be recognized for topology agent processing. VTAM

topology agent will not generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect

information from VTAM topology agent, then the filter in the EFD must be rewritten to refer only to objects of a

single class.

1052

Explanation: An EFD filter contained too many distinguished names to be recognized for topology agent processing.

VTAM topology agent will not generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect

information from VTAM topology agent, then the filter in the EFD must be rewritten to refer only to a single DN.

1053

Explanation: An EFD filter contained a resource name which was too long. VTAM topology agent will not generate

notifications for this EFD if the OSIEVENT start option is set to patterns.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect

information from VTAM topology agent, then the filter in the EFD must be rewritten to correct the object names.

Appendix C. Error codes sent by CMIP services 297

1054

Explanation: An EFD destination was incorrect. The EFD will not be created.

Action: The specified destination attribute is invalid and must be changed. The destination of an EFD should be an

AE registered by the application program.

1055

Explanation: An EFD filter contained an object class which was not recognized for topology agent processing.

VTAM topology agent will not generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect

information from VTAM topology agent, then the filter in the EFD must be rewritten to specify a support object class.

1056

Explanation: An EFD filter was not recognized for topology agent processing. VTAM topology agent will not

generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect

information from VTAM topology agent, then the filter in the EFD must be rewritten to follow a recognizable pattern.

1057

Explanation: An EFD filter was recognized as having nothing to do with VTAM topology. VTAM topology agent

will not generate notifications for this EFD regardless of the setting of the OSIEVENT start option.

Action: If the EFD which led to this warning is meant to collect information from VTAM topology agent, then the

filter in the EFD must be rewritten, as it seems to have nothing to do with VTAM topology.

298 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix D. VTAM CMIP services compliance with related

standards and profiles

This section is designed to help you understand how VTAM CMIP services

complies to the standards related to OSI systems management.

VTAM CMIP services implements functions that are defined in International

Standards Organization (ISO) standards documents and industry profiles.

ISO standards documents

This section indicates how VTAM CMIP services conforms to several ISO standards

related to OSI systems management.

ISO 9596-1 CMIP—Common Management Information Protocol

VTAM CMIP services implements all functional units specified for CMIP Version 2

in this standard. Atomic synchronization is not supported.

(ISO 10164-5) OSI systems management part 5: event report

function

VTAM CMIP services implements the event forwarding discriminator (EFD)

described in this standard. All of the object management functions specified for the

EFD are supported (GET, SET, CREATE, DELETE). VTAM CMIP services supports

general discriminator constructs of any complexity. VTAM CMIP services does not

support any of the conditional packages defined for the class or substring

operations on SET valued attributes.

ISO 8650 ACSE—Association Control Service Element

VTAM CMIP services implements all required aspects of the protocol specified as

ACSE Version 1 in this standard. VTAM CMIP services accepts all elements of

protocol specified, but only a specific set of parameters are actually used.

ISO 8823 presentation layer

VTAM CMIP services implements all required aspects of the presentation layer

protocol used for establishing and releasing connections. VTAM CMIP services also

implements the encoding and decoding function specified. It supports a single

transfer syntax, basic encoding rules (BER). Any other transfer syntaxes are

rejected. If the partner does not support BER for an abstract syntax, an association

cannot be established.

ISO 8825 BER—Basic Encoding Rules (BER)

VTAM CMIP services supports encoding and decoding of all of the ASN.1 types

using the basic encoding rules. Some of the types are supported to a limited extent,

specifically:

v Integers are encoded and decoded only up to the size supported by the machine

in a native format. When any larger integers are received, they are left in the

BER form, and passed to the user in the BER form.

v Only the default code page is supported for GraphicString.

© Copyright IBM Corp. 1995, 2005 299

ISO standards documents

This section indicates how VTAM CMIP services conforms to several industry

profiles governing the implementation of ISO standards. These profiles are defined

to allow interoperation between different implementations of the standards. Each

covers a specific set of standards and specifies the set of mandatory and optional

elements of those standards. Each profile specifies value ranges, message sizes, and

so on, that ensure a common implementation base.

DISP 11183-1, AOM 10

This profile governs the implementation of the ACSE, presentation layer, session

layer for use with Remote Operation Service Element (ROSE) and Common

Management Interface Service Element (CMISE).

VTAM CMIP services implements the relevant portions of this profile. All required

elements of protocol are supported.

DISP 11183-3, AOM 12

This profile governs the implementation of the CMISE.

VTAM CMIP services implements the relevant portions of this profile.

AOM221—general event report management

This profile governs the implementation of the event forwarding discriminator

object class, which VTAM CMIP services supports.

This profile specifies a minimum set of attributes that must be permitted to appear

in discriminator constructs and the minimum levels of complexity that must be

supported.

VTAM CMIP services complies; VTAM CMIP services allows any level of

complexity and supports any set of events (GDMO NOTIFICATION templates and

the associated attribute templates) with which it is loaded.

The profile also requires support for all matching rules that can be specified in the

discriminator construct. VTAM CMIP services does not support the SET operations:

subset, superset, and non-null-set-intersection.

The profile also requires support for two non-mandatory packages: weekly

scheduling and backup destinations. VTAM CMIP services supports neither.

This profile does not require support for confirmed mode conditional, which

VTAM CMIP services does not support.

300 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix E. VTAM topology agent object and attribute tables

VTAM-supported objects for snapshot operations

The set of objects VTAM supports for snapshot operations is presented in the

following table.

 Table 22. Supported object classes for snapshot

Object identifier Object name

1.3.18.0.0.1811 luCollection

1.3.18.0.0.2291 logicalUnitIndex

1.3.18.0.0.2152 snaLocalTopo

1.3.18.0.0.2151 snaNetwork

Naming attributes for snapshot objects

Naming attributes for snapshot objects are presented in the following table.

 Table 23. Naming attributes for snapshot objects

Attribute identifier Attribute name Object name

1.3.18.0.0.2216 graphId snaLocalTopo

1.3.18.0.0.2216 graphId snaNetwork

1.3.18.0.0.1815 luCollectionId luCollection

1.3.18.0.0.1815 logicalUnitIndexName logicalUnitIndex

VTAM-supported objects for snapshot responses

The set of objects VTAM supports for the snapshot operation responses includes all

valid objects for a GET or snapshot request and the objects in the following table.

 Table 24. Unique objects for snapshot response

Object identifier Object name Snapshot type

1.3.18.0.0.2278 crossDomainResourceManager snaNetwork

1.3.18.0.0.1848 virtualRoute snaNetwork

1.3.18.0.0.1849 virtualRoutingNode snaNetwork, snaLocalTopo

1.3.18.0.0.1840 subareaTransmissionGroup snaLocalTopo

1.3.18.0.0.1823 appnTransmissionGroup snaNetwork, snaLocalTopo

© Copyright IBM Corp. 1995, 2005 301

VTAM-supported attributes for snapshot responses

The set of attributes VTAM supports for the snapshot operation responses includes

all valid attributes for GET operations and the attributes in the following table.

 Table 25. Unique attributes for snapshot response

Attribute identifier Attribute name Snapshot type

1.3.18.0.0.5246 realSSCPname snaNetwork

1.3.18.0.0.1958 cp-cpSessionSupport snaNetwork, snaLocalTopo

1.3.18.0.0.1941 appnTGcapabilities snaNetwork, snaLocalTopo

VTAM-supported objects for GET operation

The set of objects VTAM supports for the GET operation is presented in the

following table.

 Table 26. Supported object classes for GET

Object identifier Object name

1.3.18.0.0.2281 crossDomainResource

1.3.18.0.0.2267 definitionGroup

1.3.18.0.0.1821 appnEN

1.3.18.0.0.1826 interchangeNode

1.3.18.0.0.1827 lenNode

1.3.18.0.0.2085 logicalLink

1.3.18.0.0.1829 logicalUnit

1.3.18.0.0.1803 luGroup

1.3.18.0.0.1833 migrationDataHost

1.3.18.0.0.1822 appnNN

1.3.18.0.0.2089 port

1.3.18.0.0.2288 appnRegisteredLu

1.3.18.0.0.1843 t2-1Node

1.3.18.0.0.1844 t4Node

1.3.18.0.0.1845 t5Node

VTAM-supported attributes for GET operation

The set of mandatory attributes supported for the GET operation for a given object

is presented in the following tables. There is one table per supported object class

for the GET operation.

 Table 27. CDRSC attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.3591 cdrscRealLUname

302 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 27. CDRSC attribute table (continued)

Attribute identifier Attribute name

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.2284 nlrResidentNodePointer (naming attribute)

1.3.18.0.0.2276 nonLocalResourceName

1.3.18.0.0.2277 nonLocalResourceType

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

1.3.14.2.2.4.35 opNetworkName

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

0.0.13.3100.0.7.50 userLabel

 Table 28. Definition group attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.33 availabilityStatus

2.9.3.2.7.50 allomorphs

1.3.18.0.0.2272 definitionGroupName (naming attribute)

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 29. APPN end node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

Appendix E. VTAM topology agent object and attribute tables 303

Table 29. APPN end node attribute table (continued)

Attribute identifier Attribute name

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.1997 nnServerPointer

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 30. Interchange node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.3.18.0.0.1940 appnNodeCapabilities

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.2025 dlurList

1.3.18.0.0.1967 erList

1.3.18.0.0.1970 extendedAppnNodeCapabilities

1.2.124.360501.1.240 functionID

1.3.18.0.0.1972 gatewaySSCP

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2013 puName

1.3.18.0.0.2019 resourceSequenceNumber

1.3.18.0.0.2020 routeAdditionResistance

304 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 30. Interchange node attribute table (continued)

Attribute identifier Attribute name

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 31. Low-entry networking node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 32. Logical link attribute table

Attribute identifier Attribute name

1.3.18.0.0.2119 adjacentLinkStationAddress

1.3.18.0.0.2122 adjacentNodeName

1.3.18.0.0.2121 adjacentNodeType

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

2.9.3.5.7.1 connectionID

Appendix E. VTAM topology agent object and attribute tables 305

Table 32. Logical link attribute table (continued)

Attribute identifier Attribute name

1.3.18.0.0.2125 connectionType

1.3.18.0.0.2194 dependencies

1.3.18.0.0.7899 dlurLocalLsAddress

1.3.18.0.0.2309 dlurName

1.3.18.0.0.2235 endpointForArc

1.2.124.360501.1.240 functionID

1.3.18.0.0.2131 lineType

1.3.18.0.0.2133 linkName (naming attribute)

1.3.18.0.0.2134 linkStationRole

1.3.18.0.0.2137 maxBTUsize

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

1.3.18.0.0.2236 partnerConnection

1.3.18.0.0.2142 portId

2.9.3.2.7.36 proceduralStatus

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2045 transmissionGroupNumber

2.9.3.5.7.14 underlyingConnectionNames

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 33. Logical unit attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

1.3.18.0.0.1984 luName (naming attribute)

1.3.18.0.0.1819 luSecondName

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

306 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 33. Logical unit attribute table (continued)

Attribute identifier Attribute name

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2018 residentNodePointer

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.7900 tn3270ClientDnsName

1.3.18.0.0.7901 tn3270ClientIpAddress

1.3.18.0.0.7902 tn3270ClientportNumber

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

0.0.13.3100.0.7.50 userLabel

 Table 34. LU group attribute table

Attribute identifier Attribute name

2.9.3.2.7.50 allomorphs

1.3.18.0.0.1808 luGroupMembers

1.3.18.0.0.1807 luGroupName (naming attribute)

1.3.18.0.0.1809 luGroupSize

2.9.3.2.7.63 nameBinding

2.9.3.2.7.65 objectClass

2.9.3.2.7.66 packages

 Table 35. Migration data host node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.1967 erList

1.2.124.360501.1.240 functionID

1.3.18.0.0.1972 gatewaySSCP

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.1997 nnServerPointer

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2013 puName

1.3.18.0.0.2032 snaNodeName (naming attribute)

Appendix E. VTAM topology agent object and attribute tables 307

Table 35. Migration data host node attribute table (continued)

Attribute identifier Attribute name

1.3.14.2.2.4.53 softwareList

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 36. APPN network node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.3.18.0.0.1940 appnNodeCapabilities

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.2025 dlurList

1.3.18.0.0.1970 extendedAppnNodeCapabilities

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2019 resourceSequenceNumber

1.3.18.0.0.2020 routeAdditionResistance

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 37. Port attribute table

Attribute identifier Attribute name

1.3.18.0.0.2115 abmSupported

1.3.18.0.0.2117 adapterAddresses

1.3.18.0.0.2118 adapterNumbers

308 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 37. Port attribute table (continued)

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

2.9.3.5.7.1 connectionID

1.3.18.0.0.2194 dependencies

1.3.18.0.0.2127 dlcName

1.3.18.0.0.2235 endpointForArc

1.2.124.360501.1.240 functionID

1.3.18.0.0.2129 limitedResource

1.3.18.0.0.2130 limitedResourceTimeout

1.3.18.0.0.2131 lineType

1.3.18.0.0.2134 linkStationRole

1.3.18.0.0.2137 maxBTUsize

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

1.3.18.0.0.2236 partnerConnection

1.3.18.0.0.2142 portId (naming attribute)

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2146 receiveWindowSize

1.3.18.0.0.2244 relatedAdapter

1.3.18.0.0.2148 sendWindowSize

1.2.124.360501.1.302 supportedResources

2.9.3.5.7.14 underlyingConnectionNames

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 38. APPN registered LU attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.2284 nlrResidentNodePointer

Appendix E. VTAM topology agent object and attribute tables 309

Table 38. APPN registered LU attribute table (continued)

Attribute identifier Attribute name

1.3.18.0.0.2276 nonLocalResourceName (naming attribute)

1.3.18.0.0.2277 nonLocalResourceType

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2273 registeredBy

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 39. Type 2.1 node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 40. Type 4 node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

310 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 40. Type 4 node attribute table (continued)

Attribute identifier Attribute name

1.3.18.0.0.1967 erList

1.2.124.360501.1.240 functionID

1.3.18.0.0.1971 gatewayNode

1.3.18.0.0.1978 interconnectedNetids

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

 Table 41. Type 5 node attribute table

Attribute identifier Attribute name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.1967 erList

1.2.124.360501.1.240 functionID

1.3.18.0.0.1972 gatewaySSCP

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2013 puName

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

Appendix E. VTAM topology agent object and attribute tables 311

Table 41. Type 5 node attribute table (continued)

Attribute identifier Attribute name

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

312 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix F. VTAM topology agent attributes definition

For each attribute, the following table explains:

v ASN.1 syntax used for that attribute

v The information that attribute describes about the resource; for example, its DLC

address

v What VTAM resource that attribute is referring to

v Which CMIP operations can report that attribute

v Which OSI classes that attribute applies to

abmSupported

Syntax

BOOLEAN

TRUE Supports asynchronous balance mode

FALSE

Does not support asynchronous balance mode
Meaning

Whether asynchronous balanced mode is supported

Source

XID3. This value is only TRUE when the XID format 3 received from a

type 2.1 node indicates asynchronous balanced mode.

Operations

GET

Attribute of

port

adapterAddresses

Syntax

SET OF OCTET STRING

Meaning

Local DLC address; for example, local MAC/SAP address.

Source

Dependent on resource type:

NTRI physical line

The local MAC/SAP address returned as 14 characters; for

example, 11223344556601. The first 12 characters are the MAC

address and the last two are the SAP address. This is the value

coded on the LOCADD operand of the LINE definition statement

in an NCP major node.

Note: The local MAC/SAP address does not apply to NTRI logical

lines.

LAN or ATM LAN emulation switched line

The local MAC/SAP address for the XCA adapter associated with

the line. This information is available only when the line and PU

are active and the X'57' DLC address vector has been received.

LAN or ATM LAN emulation leased line

The local MAC/SAP address for the XCA adapter associated with

© Copyright IBM Corp. 1995, 2005 313

the line. This information is available only when the line and PU

are active and the X'57' DLC address vector has been received.

ATM native SVC (switched line) or PVC (nonswitched line)

The local ATM address for the IBM S/390 Open Systems Adapter

associated with the SVC or PVC. The local ATM address is

returned as a variable length character string. The following is an

example of an ATM address:

XXXXYYYYZZ...ZZ

where:

XXXX Represents the address type and plan and can be:

X'0101'

Indicates public E164 address, which means the

address is in a public ATM network.

X'0002'

Indicates International Organization for

Standardization (ISO) network service access point

(NSAP), which means the address is in a private

ATM network.

YYYY Represents the length of the address. The address can be

up to 20 bytes in hexidecimal format.

ZZ...ZZ

Represents the actual ATM address. The address can be up

to 20 bytes in length.

XCF line

The XCF token of the agent VTAM returned as 16 characters.
Operations

GET, SNAPSHOT(snaLocalTopo)

Attribute of

port

adapterNumbers

Syntax

SET OF INTEGER (0..65535)

Meaning

Address or addresses used to access the port

Source

Dependent on resource type:

Channel lines

This is the decimal representation of the channel unit address coded

on the ADDRESS operand of the LINE definition statement.

Multipath channel

This is the decimal representation of each read and write channel

unit address coded on the READ and WRITE operands of the

LINE definition statement in the MPC group.

APPN host-to-host channel

This is the decimal representation of each read and write channel

unit address coded on the READ and WRITE operands of the

transport resource list entry (TRLE) associated with the PU.

314 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

NCP SDLC lines

This is the decimal representation of the line address coded on

ADDRESS operand of the LINE definition statement.

XCA lines

The decimal channel unit address of the channel that connects

VTAM to the 3172 Interconnect Controller.
Operations

GET, SNAPSHOT(snaLocalTopo-appnOnly)

Attribute of

port

adjacentLinkStationAddress

Syntax

CHOICE { IsAddr OCTET STRING, noLSaddr NULL }

Meaning

DLC address for the remote PU.

For SDLC

SDLC polling address

For token ring and frame relay

Remote MAC/SAP address

For ATM native SVCs

Destination ATM address

For ATM native PVCs

Null string

For XCF

XCF token of the adjacent VTAM
Source

Dependent on resource type:

For SDLC non-switched PUs

The SDLC polling address of the PU. This is specified on the

ADDR operand of the PU statement.

For NTRI logical switched PUs

The MAC/SAP address of the remote PU in the form

11223344556601. The first 12 characters are the MAC address and

the last two are the SAP address. This information is available only

when the line and PU are active and the X'57' DLC address vector

has been received.

For NTRI logical subarea PUs

The MAC/SAP address of the remote link station. The MAC

address is coded on the LOCADD operand of the LINE. The SAP

address for NCP NTRI is X'04'.

LAN or ATM LAN emulation peripheral connections (switched)

The MAC/SAP address of the remote PU. This information is

available only when the line and PU are active and the X'57' DLC

address vector has been received.

LAN or ATM LAN emulation subarea connections (leased)

The MAC/SAP address of the remote link station. This MAC

address is defined on the MACADDR operand of the PU definition

statement. The SAP address is defined on the SAPADDR operand

of the PU definition statement.

Appendix F. VTAM topology agent attributes definition 315

ATM native connections (TGs over SVCs)

The destination ATM address for the remote node associated with

the SVC. The destination ATM address The remote ATM address is

returned as a variable length character string. The following is an

example of an ATM address:

XXXXYYYYZZ...ZZ

where:

XXXX Represents the address type and plan and can be:

X'0101'

Indicates public E164 address, which means the

address is in a public ATM network.

X'0002'

Indicates International Organization for

Standardization (ISO) network service access point

(NSAP), which means the address is in a private

ATM network.

YYYY Represents the length of the address. The address can be

up to 20 bytes in hexidecimal format.

ZZ...ZZ

Represents the actual ATM address. The address can be up

to 20 bytes in length.

ATM native connections (TGs over PVCs)

The destination ATM address for the remote node associated with

the PVC is unknown.

XCF connections

The XCF token of the adjacent VTAM returned as 16 characters.

This information is available only when the XCF connection is

active.
Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

logicalLink

adjacentNodeName

Syntax

GraphicString (SIZE(0..17))

Meaning

Network qualified name of node connected to this logicalLink.

Source

Generally, this information is available only when the line and PU are

active. This represents the name of the adjacent node and depends on the

type of connection (subarea or APPN) and the code level of the contacted

node. These nodes are capable of providing the X'0EF1', X'0EF4', and

X'0EF7' control vectors during CONTACT processing.

Subarea connection to VTAM V4R3 or later

The SSCP name of the VTAM contacted by this link station.

Subarea connection to NCP V7R1 or later

The PU name of the NCP contacted by this link station. This might

be the same as the NCP load module name.

316 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Subarea connection to backlevel subarea node (NCP earlier than V7R1 or

VTAM earlier than V4R3)

The name is represented as a character string with the decimal

subarea number of the contacted node. For example, 00000123

would be the name for a backlevel subarea node with subarea

number 123.

APPN connections

The CP name of the contacted APPN node.

LEN connections

The CP name of the contacted LEN node or the predefined CP

name or the name of the VTAM host CP supporting the LEN

connection.
Operations

GET

Attribute of

logicalLink

adjacentNodeType

Syntax

ENUMERATED { unknown,

len,

nn,

en,

t1,

t20,

t4,

t5,

t21 }

Meaning

Type of attached PU or node.

Source

The node type is provided as it is currently known according to definitions

at VTAM topology agent host. This attribute is related to the PUTYPE and

XID operand of the PU definition statement. The value provided may

change after the node is contacted and VTAM determines the actual node

type of the contacted node.

 PUTYPE XID AdjacentNodeType

1 N/A t1

2 NO t20

2 YES t21 (if not yet contacted)

2 YES len (contacted len node)

2 YES en (contacted APPN end node)

2 YES nn (contacted APPN network node)

4 N/A t4 (contacted PU type 4)

4 N/A t5 (contacted PU type 5)

5 N/A t5 (contacted PU type 5)

Note: logicalLinks represent either a subarea or APPN connection to an

adjacent node. Therefore, the adjacent node type is never be a

Appendix F. VTAM topology agent attributes definition 317

composite of subarea and APPN (for example, an interchange node).

The manager application program must infer the actual node type of

composite nodes or consult an agent application program at the

node in question.
Operations

GET, SNAPSHOT(snaLocalTopo)

Attribute of

logicalLink

administrativeState

Syntax

Two types: ENUMERATED { locked,

unlocked,

shuttingDown }

OCTET: X'00'= locked

X'00'= locked

X'01'= unlocked

X'02'= shuttingDown

X'FF'= unchanged

 ENUMERATED is used for GET operations. OCTET is used for

SNAPSHOT operations.

Meaning

OSI administrative state.

Source

Value is always “unlocked”.

Operations

GET, SNAPSHOT(all types)

Attribute of

all objects

allomorphs

Syntax

SET OF ObjectClass (OIs)

Meaning

Classes for which this class can emulate. Constant value; depends on object

class.

Source

Depends on the object class

Object class

allomorphs

t5Node

(lenNode, t2-1Node)

appnNN

(lenNode, t2-1Node)

appnEN

(lenNode, t2-1Node)

interchangeNode

(lenNode, t2-1Node, t5Node, appnNN)

migrationDataHost

(lenNode, t2-1Node, t5Node, appnEN)

318 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

others ()
Operations

GET

Attribute of

all objects

appnNodeCapabilities

Syntax

OCTET STRING (SIZE(2))

Meaning

SNA control vector 45, subfield 80:

Bit Meaning

1... Gateway function supported

.1.. Directory server function supported

..1. Intermediate routing function supported

...1 Chain function supported

.... 00..

Reserved

.... ..00

SNA node type 5

.... ..11

SNA node type 2.1

1... Release 1 border node

.1.. Interchange node

..1. Release 2 border node

...0 0...

No HPR support

...0 1...

HPR base support

...1 0...

HPR base and tower support

...1 1...

Reserved

.... .000

Reserved
Source

This information is provided only for the node running the VTAM

topology agent and only when the node is capable of being an APPN

network node.

Operations

GET, SNAPSHOT(snaNetwork, snaLocalTopo)

Attribute of

interchangeNode

appnNN

Appendix F. VTAM topology agent attributes definition 319

appnTGcapabilities

Syntax

OCTET STRING (SIZE(1))

Meaning

TG capabilities of an APPN transmission group from SNA control vector

46, subfield 80, flags byte

Bit Meaning

1... tgPartnerIsAConnectionNetwork

.1.. Peripheral TG

..1. tgPartnerType is type 2

..0. tgPartnerType is type 2.1

...0 0...

tgType is boundary function or APPN TG

...0 1...

tgType is interchange TG

...1 0...

tgType is virtual route TG

...1 1...

Reserved

.... .1.. intersubnetworkLink for Release 1 border nodes

.... .0.. intersubnetworkLink for Release 2 border nodes

.... ..1. Reserved

.... ...1 Reserved
Source

CV 46, subfield 80 for active APPN TGs. This attribute does not apply to

LEN connections.

Operations

SNAPSHOT(snaNetwork,snaLocalTopo)

Attribute of

appnTransmissionGroup

attachedCircuitList

Syntax

SET OF ObjectInstance

Meaning

VTAM always builds the empty set, ().

Source

Not supported

Operations

GET

Attribute of

appnEN

interchangeNode

lenNode

logicalUnit

migrationDataHost

appnNN

320 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

t2-1Node

t4Node

t5Node

availabilityStatus

Syntax

SET OF INTEGER { inTest (0),

failed (1),

powerOff (2),

offLine (3),

offDuty (4),

dependency (5),

degraded (6),

notInstalled (7),

logFull (8) }

OCTET: X'00'= no Status

X'01'= notInstalled

X'02'= degraded

X'04'= dependency

X'08'= offDuty

X'10'= offLine

X'20'= powerOff

X'40'= failed

X'80'= inTest

X'FF'= no change

 INTEGER is used for GET and NOTIFICATION operations.

 OCTET is used for SNAPSHOT operations.

Meaning

OSI availability status: The following values can be returned by VTAM:

offline, failed, intest, dependency, degraded, and no information NULL.

Source

Determined from VTAM resource definition table entry (RDTE) finite state

machine (FSM) state or SNA control vector 45, subfield 80 depending on

resource type.

Operations

GET, SNAPSHOT(all types), NOTIFICATIONS

Attribute of

all objects except luGroup

cdrscRealLUname

Syntax

SNAcsAD-819(SIZE(0..17))

Meaning

Represents the network-qualified real LU name (instead of an alias name)

for a cross-domain resource.

Source

Valid for a cross-domain resource that has been verified by session

establishment with the actual resource represented by the CDRSC. The real

name may vary from the CDRSC name due to alias name translation.

Appendix F. VTAM topology agent attributes definition 321

Operations

GET, SNAPSHOT (luCollection, luIndex)

Attribute of

crossDomainResource

connectionID

Syntax

GraphicString

Meaning

Address or addresses used to access the port

Source

The information provided is similar to that provided for adapterNumbers.

However, this attribute provides the data in character format that might

contain hexadecimal characters.

v For a port object, the value is described by the following:

Channel lines

This is the hex representation of the channel unit address coded

on the ADDRESS operand of the LINE definition statement.

Multipath channel

This is the hex representation of each read and write channel

unit address coded on the READ and WRITE operands of the

LINE definition statement in the MPC group. Each address each

separated by a comma.

APPN host-to-host channel

This is the hex representation of each read and write channel

unit address coded on the READ and WRITE operands of the

transport resource list entry (TRLE) associated with the PU. Each

address is separated by a comma.

NCP SDLC lines

This is the decimal representation of the line address coded on

ADDRESS operand of the LINE definition statement.

LAN or ATM LAN emulation lines

The hex channel unit address of the channel that connects VTAM

to the IBM 3172 Nways® Interconnect Controller or the IBM

S/390 Open Systems Adapter. This attribute appends the slot

number to the channel address separated by a period; for

example, 590.001. The slot number is coded on the ADAPTNO

operand of the PORT statement in the external communications

adapter (XCA) major node.

ATM native SVCs (switched lines) and PVCs (nonswitched lines)

The name of the TRLE definition statement in the TRL major

node that defines the IBM S/390 Open Systems Adapter.

XCA Lines for Enterprise Extender

This is the local host virtual IP address (VIPA). The IP address

can be either an IPv4 address in dotted-decimal form or an IPv6

address in the colon-hexadecimal form.
v For a logicalLink object, the value is described by the following:

ATM native SVCs (switched lines) and PVCs (nonswitched lines)

The virtual path connection identifier/virtual channel identifier

(VPCI/VCI) received on the CM_CONNECT indication.

322 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Switched PUs for Enterprise Extender lines

This is the remote host virtual IP address (VIPA). The IP address

can be either an IPv4 address in dotted-decimal form or an IPv6

address in the colon-hexadecimal form.
Operations

GET, SNAPSHOT(snaLocalTopo-appnPlusSubarea)

Attribute of

logicalLink

port

connectionType

Syntax

ENUMERATED { unknown,

host,

peer,

host-and-peer }

Meaning

Type of connection to node:

peer T2.1 nodes not requesting ACTPU

host-and-peer

T2.1 nodes requesting ACTPU

host FID4 connections

unknown

Inactive FID2 connections
Source

For type 2.1 node, the XID format 3 indicates ACTPU requirements. FID4

connections are determined by system definition.

Operations

GET

Attribute of

logicalLink

cp-cpSessionSupport

Syntax

BOOLEAN

TRUE APPN TG is capable of CP-CP sessions.

FALSE

APPN TG is not capable of CP-CP sessions.
Meaning

Whether TG is capable of supporting CP-CP sessions. This does NOT

indicate whether CP-CP sessions exist; it indicates only that the capability

exists.

Source

Determined from TG control vector X'47'.

Operations

SNAPSHOT(snaNetwork), SNAPSHOT(snaLocalTopo)

Attribute of

appnTransmissionGroup

definitionGroupName

Syntax

GraphicString

Appendix F. VTAM topology agent attributes definition 323

Meaning

Major node type and major node name.

Source

Major node type and name are determined from system definition. The

type and name are concatenated and separated by a period; for example,

NCP.NCP3AB7.

 The following major node types are supported.

Prefix Description

NCP NCP major node

APPL Application major node

LCLNONSNA

Local non-SNA major node

SWITCHED

Switched major node

LOCALSNA

Local SNA major node

CDRM

CDRM major node

CDRSC

CDRSC major node

CA Channel Attached major node

MODEL

Model major node

LAN ICA LAN major node

PACKET

Packet major node

XCA XCA major node

LUGROUP

LUGROUP major node

ADJCP

Adjacent CP major node

TCP TCP/IP major node

TRL Transport resource list major node
Operations

GET, SNAPSHOT(snaLocalTopo)

Attribute of

definitionGroup

dependencies

Syntax

CHOICE { unknown -0- IMPLICIT NULL,

noDependents -1- IMPLICIT NULL,

dependendents Dependents }

Dependents ::= CHOICE { item ObjectInstance,

and IMPLICIT SET OF Dependents,

or IMPLICIT SET OF Dependents}

Meaning

Higher level object upon which the object of interest is dependent. This

usually includes the definitionGroup object that has information about the

VTAM major node and type.

324 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Object type

Dependent on

port definition group, logicalLink, VTAM, NCP

 NTRI logical lines that are represented as port objects report the

physical unit as a dependency, when known.

logicalLink

definition group, port

 Switched logicalLinks report a port dependency only when the PU

is connected.

Note: VTAMTOPO line filtering does not affect port dependency.

t4Node

definition group, VTAM

logical unit

definition group, logicalLink, VTAM, dependent LU requester

 Dependent logical units have a dependency on the owning PU.

The owning PU is represented as a logicalLink. The logicalLink is

not included for logicalUnits owned by the VTAM host, such as

application programs.

 Dependent LUs that use the dependent LU requester and

dependent LU server function are dependent on the dependent LU

requester node, which is represented as a snaNode.

cdrsc definition group, snaNode

 CDRSCs have a dependency on the owning CDRM, when known.

The owning CDRM is represented as an snaNode.
Source

The major node type and name and the higher level resource name are

determined from system definitions.

Operations

GET, SNAPSHOT(snaLocalTopo, snaNetwork, luCollection)

Attribute of

all objects except luGroup

dlcName

Syntax

GraphicString (SIZE(1..8))

Meaning

A character constant describing the data link control name, as shown in the

following list. VTAM might not support each DLC listed.

Constant

Description

IBMTRNET

Token Ring

FDDI Fiber

SDLC SDLC

CSMA

CSMA

FRRELAY

Frame Relay

Appendix F. VTAM topology agent attributes definition 325

SMDS

SMDS

CHANNEL

Channel

ETHERAND

Ethernet

TOKENBUS

Token Bus

ISDNBASC

ISDN basic

ISDNPRI

ISDN primary

ISDNBB

ISDN broadband

ATM Asynchronous Transfer Mode

XCF Cross-system Coupling Facility
Source

Determined from system definition.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

port

dlurList

Syntax

SET OF ObjectInstance

Meaning

The list of dependent LU requester (DLUR) nodes served by this

dependent LU server (DLUS) node. VTAM always returns empty set.

Source

Not supported.

Operations

GET

Attribute of

appnNN

interchangeNode

dlurLocalLsAddress

Syntax

CHOICE { noLSaddr NULL, lsAddr OCTET STRING }

Meaning

The local DLUR DLC address.

Source

The MAC/SAP address of the DLUR LAN adapter used for the connection

to the PU reporting this attribute. This value is in the form 11223344556601

where the first 12 characters are the MAC address and the last two are the

SAP address. This information is available when the PU is active and the

x’57’ DLC address vector has been received.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

logicalLink

326 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

When a DLUR supports downstream PUs, an instance with this behavior

reports the local addressing information (for example, a LAN MAC and

SAP at the DLUr’s end) for the logical link between the DLUR and the

downstream PU.

dlurName

Syntax

CHOICE { noInfo NULL, object ObjectInstance }

Meaning

The network-qualified name of the dependent LU requester (DLUR) node

associated with this logicalLink.

Source

This attribute value is determined when a switched PU connects to a

dependent LU requester.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

logicalLink

endpointForArc

Syntax

CHOICE { noinfo NULL, object ObjectInstance }

Meaning

VTAM always returns noinfo NULL.

Source

Not supported.

Operations

GET

Attribute of

logicalLink

port

erList

Syntax

SET OF ObjectInstance

Meaning

VTAM always returns empty set.

Source

Not supported.

Operations

GET

Attribute of

interchangeNode

migrationDataHost

t4Node

t5Node

extendedAppnNodeCapabilities

Syntax

OCTET STRING (SIZE(2))

Meaning

SNA control vector 45, subfield 81:

Bit Meaning

Appendix F. VTAM topology agent attributes definition 327

1... Node is central director server

.000 0000

Reserved

0000 0000

Reserved
Source

The VTAM topology data base.

Operations

GET, SNAPSHOT (snaNetwork, snaLocalTopo)

Attribute of

interchangeNode

appnNN

functionID

Syntax

CHOICE { number INTEGER, string GraphicString }

Meaning

Value of the low-order relative distinguished name in the distinguished

name of the object. This is the common name of the object.

Source

The value is determined from the GET request.

Operations

GET

Attribute of

all objects except luGroup

gatewayNode

Syntax

BOOLEAN

TRUE The type 4 node is capable of acting as a gateway node.

FALSE

The type 4 node is not capable of acting as a gateway node.
Meaning

Whether type 4 node is capable of acting as a gateway node.

Source

This capability is indicated on the ACTPU response.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

t4Node

gatewaySSCP

Syntax

BOOLEAN

TRUE The node running the VTAM topology agent is capable of acting as

a gateway node

FALSE

The node running the VTAM topology agent is not capable of

acting as a gateway node
Meaning

Whether the node running the VTAM topology agent is capable of acting

as a gateway node

328 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Source

Start option definition for GWSSCP start option.

Operations

GET, SNAPSHOT(snaLocalTopo)

Attribute of

interchangeNode

migrationDataHost

t5Node

interconnectedNetids

Syntax

SET OF SEQUENCE { native BOOLEAN,

netid ObjectInstance,

netIdRole ENUMERATED { static (0),

dynamic (1) },

subareaAddress subareaAddress,

subareaLimit SubareaLimit }

Meaning

The network identifiers supported by a gateway NCP.

Source

These network identifiers are either defined on the NETWORK operand of

the NCP major node or they are discovered by using the NOTIFY RUs

from the NCP.

Operations

GET, SNAPSHOT(snaLocalTopo)

Attribute of

t4Node

limitedResource

Syntax

BOOLEAN

TRUE The port is a limited resource.

FALSE

The port is not a limited resource.
Meaning

Whether the port is a limited resource.

Source

System defintion for line represented by port object. Limited resource

status is indicated by the LIMRES keyword.

Operations

GET

Attribute of

port

limitedResourceTimeout

Syntax

CHOICE { integer INTEGER,uninitialized NULL }

Meaning

This attribute is always returned as uninitialized NULL.

Source

Not supported.

Appendix F. VTAM topology agent attributes definition 329

Operations

GET

Attribute of

port

lineType

Syntax

ENUMERATED { switched, nonswitched }

Meaning

Depends on whether the line is switched.

switched

The line or physical unit is a switched resource.

nonswitched

The line or physical unit is not a switched resource.

For ATM native connections: are nonswitched.
Source

System definition for the PU.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

logicalLink

port

linkName

Syntax

GraphicString (SIZE(1..17))

Meaning

The name of the physical unit represented by the logicalLink object.

Source

System definition for the PU or link station.

Operations

GET

Attribute of

logicalLink

linkStationRole

Syntax

ENUMERATED { secondary,

primary,

negotiable,

unknown }

Meaning

Indicates the role of the link station represented by the logicalLink object.

Source

This is determined by system definition and XIDs where applicable.

Operations

GET

Attribute of

logicalLink

port

330 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

luGroupMembers

Syntax

SET OF Fully-QualifiedNAUname

SNAcsAD-819(SIZE(1..17))

Meaning

Network-qualified names of the resources that make up an luGroup object.

Source

Depends on the underlying implementation of the luGroup.

USERVAR

The name specified on the VALUE= keyword when defining a

USERVAR.

Generic resource

The names of real application programs associated with the generic

resource definition. Application programs are added to or deleted

from the luGroup with the SETLOGON macroinstruction of the

VTAM application programming interface (API).
Operations

GET, SNAPSHOT (luCollection)

Attribute of

luGroup

luGroupName

Syntax

SNAcsAD-819(SIZE(1..8))

Meaning

The naming attribute of the luGroup object.

Source

This is the name provided on a GET request for an luGroup object.

Operations

GET

Attribute of

luGroup

luGroupSize

Syntax

NonnegativeNumber

Meaning

Number of members in the luGroup object.

Source

For a USERVAR, this is always 1. For a generic resource, this is the number

of application programs associated with the generic resource. This

corresponds to the number of member names provided in the

luGroupMembers attribute.

Operations

GET

Attribute of

luGroup

luSecondName

Syntax

GraphicString

Appendix F. VTAM topology agent attributes definition 331

Meaning

For logicalUnit objects that are VTAM application programs, this attribute

provides the ACB name of the application. For logicalUnit objects that are

not application programs, this attribute value is the null string.

Source

The ACBNAME is coded on the APPL application definition in an

application program major node. The ACBNAME may be the same as the

application name.

Operations

GET

Attribute of

logicalUnit

maxBTUsize

Syntax

CHOICE { maxBTUsize INTEGER (1..32767), noMaxBTUsize NULL }

Meaning

VTAM always builds (noMaxBTUsize NULL).

Source

This attribute value is not supported.

Operations

GET

Attribute of

logicalLink

port

nameBinding

Syntax

OBJECT IDENTIFIER

Meaning

The name binding object from which VTAM derives the naming attribute

of the object class.

Source

Constant for each object class

Operations

GET

Attribute of

all objects

nativeStatus

Syntax

INTEGER { active (0),

activeWithSession (1),

inactive (2),

neverActive (3),

pendingActive (4),

pendingInactive (5),

connectable (6),

routable (7),

operative (8),

congested (9),

332 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

released (10),

reset (11),

inoperative (12) }

OCTET: X'02'= inactive

X'03'= neverActive

X'04'= pendingActive

X'05'= pendingInactive

X'06'= connectable

X'07'= routable

X'09'= congested

X'0A'= released

X'0B'= reset

X'0C'= inoperative

X'FF'= no change

 INTEGER is used for GET and NOTIFICATION operations.

 OCTET is used for snapshot operations.

Meaning

The VTAM status of the resource. All of the states except the “congested”

status correspond with existing VTAM resource states. The “congested”

status indicates that an NCP type 4 node is in slowdown.

Source

The finite state machine and modifiers in the RDTE for the resource.

Note: This value usually corresponds with the resource status displayed

on VTAM message IST486I. However, the VTAM display is usually

more specific since VTAM defines many more intermediate resource

states than are provided by the VTAM topology agent.
Operations

GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of

all objects except luGroup

nlrResidentNodePointer

Syntax

GraphicString

Meaning

Name of the CP or SSCP that owns the real resource represented by this

CDRSC or appnRegisteredLu object.

Source

Depends on Object type

CDRSC

This is the owning CP or SSCP. This may be predefined or learned

as a result of session establishment. When this information is

unknown, the null string is returned.

appnRegisteredLu

This is the CP name for this resource.
Operations

GET, SNAPSHOT (luCollection)

Appendix F. VTAM topology agent attributes definition 333

Attribute of

CDRSC

appnRegisteredLu

nnServerPointer

Syntax

CHOICE { noObject NULL, Object ObjectInstance }

Meaning

This is the object instance that represents the network node server for the

node running the VTAM topology agent when the node is an APPN end

node or migration data host. The null form is provided when the network

node server is not known.

Source

The network node server is determined at the time CP-CP sessions are

established. Potential network node servers might be defined in a network

node server list major node, but this attribute is available only when a

server has actually been selected.

Operations

GET

Attribute of

appnEN

migrationDataHost

nonLocalResourceName

Syntax

GraphicString

Meaning

The name specified on the GET operation for the registeredLU object or the

CDRSC object.

Source

The input name is returned in this attribute.

Operations

GET

Attribute of

CDRSC

appnRegisteredLu

nonLocalResourceType

Syntax

GraphicString

Meaning

The object type of the object found with the nonLocalResourceName

attribute. The values are:

v CDRSC

v appnRegisteredLu.
Source

The resulting type depends on the type of the resource found as a result of

a GET operation. If both exists, CDRSC is returned.

Operations

GET

Attribute of

CDRSC

appnRegisteredLu

334 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

objectClass

Syntax

OBJECT IDENTIFIER

Meaning

The object class of the object containing this attribute

Source

From VTAM resource information

Operations

GET

Attribute of

all objects

opEquipmentList

Syntax

SET OF ObjectInstance

Meaning

For the node running the VTAM topology agent, a distinguished name in

the form:

distinguishedName

"1.3.18.0.2.4.8=ORGREG;

 2.5.4.10=IBM;

 1.3.18.0.2.4.7=<CPU Model>;

 1.3.14.2.2.4.50=<CPU Serial Number>"

<CPU Model> is a character string that contains the actual CPU model for

the agent host. <CPU Serial Number> is a character string that contains the

serial number for the agent host.

 For non-host objects, the null set is returned.

Source

Determined from system storage.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

appnEN

interchangeNode

lenNode

logicalLink

migrationDataHost

appnNN

port

t2-1Node

t4Node

t5Node

opNetworkName

Syntax

GraphicString

Meaning

The network name of the network where the LU represented by the

CDRSC object resides, when available.

Source

For predefined alias CDRSCs that are not in session, this information is

Appendix F. VTAM topology agent attributes definition 335

unknown and the null string is provided. Otherwise, this is the predefined

or learned NETID of the resource represented by this CDRSC object.

Operations

GET

Attribute of

CDRSC

operationalState

Syntax

ENUMERATED { disabled, enabled } OCTET: X'00'= disabled

X'01'= enabled

X'FF'= no change

 ENUMERATED is used for GET and NOTIFICATION operations.

 OCTET is used for snapshot operations.

Meaning

The OSI operational state.

Source

Determined from VTAM resource definition table entry (RDTE) finite state

machine (FSM) state or SNA control vector 45, subfield 80 depending on

resource type.

Operations

GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of

all objects except luGroup

packages

Syntax

SET OF OBJECT IDENTIFIER

Meaning

The packages of attributes supported by VTAM for an object class.

Source

Constant set of attributes for each class

Operations

GET

Attribute of

all objects

partnerConnection

Syntax

CHOICE { noinfo NULL,object ObjectInstance }

Meaning

This is the object instance that represents the logicalLink on other end of a

subarea or APPN TG connection, when available.

Source

This is the name of the partner link station provided by the X'0EF7' control

vector on XID. This information is available from APPN nodes and uplevel

subarea nodes. Uplevel subarea nodes are VTAM V4R3 or NCP V7R1 or

later. LogicalLinks must be active to obtain this information.

Operations

GET

336 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Attribute of

logicalLink

port

portId

Syntax

GraphicString

Meaning

Name of the port object. When reported as an attribute of logicalLink, this

identifies the SNA line associated with the physical unit. When reported as

an attribute of port, it names the port object.

Source

The port object represents a SNA LINE or DAN. SNA lines are defined

during system definition or are dynamically created when channel attached

NCPs are activated. Dynamically created lines have names of the form

0321-L where the first 4 characters are the printable hex representation of

the channel unit address coded on the CUADDR operand of the PCCU

statement in the NCP major node.

 DANs represent connections to SNA controllers and are not explicitly

defined. The name for the DAN is constructed from the channel unit

address on the CUADDR operand of the PU statement in the local SNA

major node. For example, CUADDR=16, would result in a portid of

000016-L.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

logicalLink

port

proceduralStatus

Syntax

SET OF INTEGER { initializationRequired (0)

notInitialized (1)

initializing (2)

reporting (3)

terminating (4) }

OCTET: X'00'= no status

X'08'= terminating

X'10'= reporting

X'20'= initializing

X'40'= not initialized

 INTEGER is used for GET and NOTIFICATION operations.

 OCTET is used for snapshot operations.

Meaning

OSI state procedural status.

Source

Determined from VTAM resource definition table entry (RDTE) finite state

machine (FSM) state or SNA control vector 45, subfield 80 depending on

resource type.

Appendix F. VTAM topology agent attributes definition 337

Operations

GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of

all objects except luGroup and definitionGroup

puName

 SNAcsA-819 (SIZE(1..8))

Meaning

This is the name of the VTAM Agent host’s subarea PU.

Source

The VTAM host subarea PU name is defined on the HOSTPU start option

or is defaulted to ISTPUS.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

interchangeNode

migrationDataHost

t5Node

receiveWindowSize

Syntax

CHOICE { integer INTEGER, uninitialized NULL }

Meaning

VTAM always returns uninitialized NULL.

Source

Not supported

Operations

GET

Attribute of

port

realSSCPname

Syntax

SNAcsAD-819 (SIZE(0..17))

Meaning

The real name of a cross domain resource manager as known at its SSCP.

This information is not known until a CDRM-CDRM session has been

established to the CDRM.

Source

This information is determined from SSCP Name control vector X'18' when

available.

Operations

SNAPSHOT (snaNetwork-appnPlusSubarea)

Attribute of

crossDomainResourceManager

registeredBy

Syntax

ObjectInstance

Meaning

Provides the name of the node which registered the logical unit

represented by this nonlocal resource.

338 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Source

Name of the end node that registered the LU. This attribute is only known

at Directory Server and Network Node Server agent hosts that have the

resource registered.

Operations

GET

Attribute of

appnRegisteredLu

relatedAdapter

Syntax

CHOICE { noinfo NULL, object ObjectInstance }

Meaning

A logicalLink instance that is providing the physical connection for a

logical line represented by a port object.

Source

The physical resource is applicable to NTRI logical lines and is determined

at connection time. The physical PU is determined by the Related Resource

Network Name subfield of the X'57' control vector provided by NCP.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

port

residentNodePointer

Syntax

ObjectInstance

Meaning

Name of a managed object representing the SNA node upon which this

logicalUnit resides.

Source

For Dependent LUs, this represents the PU under which the LU is defined.

For application programs and local non-SNA terminals, this represents the

VTAM host.

Operations

GET, SNAPSHOT (luCollection)

Attribute of

logicalUnit

resourceSequenceNumber

Syntax

INTEGER (0..2**32-1)

Meaning

For a GET on the VTAM agent host object, this attribute provides the

current resource sequence number for the node. For

SNAPSHOT(snaNetwork) this attribute provides the current resource

sequence number for an appnTransmissionGroup object.

Source

VTAM resource data

Operations

GET, SNAPSHOT (snaNetwork)

Appendix F. VTAM topology agent attributes definition 339

Attribute of

interchangeNode

appnNN

appnTransmissionGroup

routeAdditionResistance

Syntax

INTEGER (0..255)

Meaning

VTAM always provides the value 0.

Source

Not supported.

Operations

GET

Attribute of

interchangeNode

appnNN

sendWindowSize

Syntax

CHOICE { integer INTEGER, uninitialized NULL }

Meaning

VTAM always provides uninitialized NULL.

Source

Not supported.

Operations

GET

Attribute of

port

snaNodeName

Syntax

SNAcsAD-819 (SIZE(1..17))

Meaning

The name of an SNA node.

Source

For the VTAM host objects, this is the CP or SSCP name. For t4Node

objects, this is the NCP PU name. For t2-1Node or lenNode, this is the CP

name.

Note: GET support for all node types except t4Node is limited to the

VTAM agent host.
Operations

GET

Attribute of

appnEN

interchangeNode

lenNode

migrationDataHost

appnNN

t2-1Node

t4Node

t5Node

340 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

softwareList

Syntax

SET OF ObjectInstance

Meaning

Provides the version and release of the VTAM running at the agent host.

distinguishedName

"1.3.18.0.2.4.8=ORGREG;

 2.5.4.10=IBM;

 0.0.13.3100.0=(pString

 ACF/VTAM.<version>.<release>.

 <dot rel>)"

Source

VTAM storage.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

appnEN

interchangeNode

lenNode

migrationDataHost

appnNN

t2-1Node

t5Node

subareaAddress

Syntax

INTEGER (1..65535)

Meaning

The subarea address associated with the subarea object instance.

Source

For the agent host object types, this is the value of the HOSTSA start

option.

 For t4Node objects that represent NCPs, this is the value of the SUBAREA

operand of the PCCU statement in an NCP major node.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

interchangeNode

migrationDataHost

t4Node

t5Node

subareaLimit

Syntax

INTEGER (255..65535)

Meaning

The subarea limit associated with the subarea object instance.

Source

For the agent host object types, this is the value of the MXSUBNUM start

option.

 For t4Node objects that represent NCPs, this is the value of the SALIMIT

operand of the NETWORK statement in an NCP major node. VTAM

obtains this value at ACTPU response time, not from the NCP definition.

Appendix F. VTAM topology agent attributes definition 341

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

interchangeNode

migrationDataHost

t4Node

t5Node

supportedResources

Syntax

CHOICE { noResources NoResources, resources SET OF ObjectInstance }

NoResources ::= ENUMERATED { infoUnavailable,

none }

Meaning

When provided for the VTAM agent host object, this attribute contains a

set of definitionGroup objects that represent all the major nodes defined at

this host. For all other object types, (noResources none) is returned.

Source

This information is obtained from the system definitions at the agent host.

Operations

GET

Attribute of

all objects except luGroup

sysplexInfo

Syntax

GraphicString

Meaning

Name of the MVS/ESA sysplex, if known.

Source

This name is obtained from the MVS/ESA CVT when available.

Operations

GET, SNAPSHOT (snaLocalTopo)

Attribute of

appnEN

interchangeNode

lenNode

migrationDataHost

appnNN

t2-1Node

t5Node

tn3270ClientDnsName

Syntax

CHOICE { noDnsName NULL, fullName GraphicString, truncatedName

GraphicString }

Meaning

The TN3270 client DNS name.

Source

The client DNS name associated with TN3270 LU.

342 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Operations

GET, SNAPSHOT (luCollection), NOTIFICATIONS

Attribute of

logicalUnit

 This attribute returns either a GraphicString representation of a Domain

Name Service (DNS) name for the TN3270 client associated with this LU,

or a NULL value indicating that there is no client DNS name associated

with this LU. If a name is returned, there is an indication whether it is a

full name or a truncated name.

tn3270ClientIpAddress

Syntax

CHOICE { noIpAddress NULL, ipv4 GraphicString(SIZE(7..15)), ipv6

GraphicString(SIZE(2..56))}

Meaning

The TN3270 client IP address.

Source

The IP address associated with TN3270 LU.

Operations

GET, SNAPSHOT (luCollection), NOTIFICATIONS

Attribute of

logicalUnit

 This attribute returns either a NULL value, indicating that there is no client

IP address associated with this LU, or an IPv4 address in the

dotted–decimal form (for example, a.b.c.d), or an IPv6 address in the

colon–hexadecimal form (for example, a:b:c:d:e:f:g:h) or if the IPv6 zone ID

is supported, displays could be in the form a:b:c:d:e:f:g:h%zoneid.

tn3270ClientPortNumber

Syntax

CHOICE { noIpPort NULL, portNumber PrintableString(SIZE(1..5)

Meaning

The TN3270 client IP port number.

Source

The IP port number associated with TN3270 LU.

Operations

GET, SNAPSHOT (luCollection), NOTIFICATIONS

Attribute of

logicalUnit

 This attribute returns either a PrintableString representation of an IP port

number between 1 and 65535 (decimal) inclusive, or a NULL value

indicating that there is no client IP port number associated with this LU.

transmissionGroupNumber

Syntax

CHOICE { integer INTEGER, uninitialized NULL }

Meaning

This attribute provides the TG number associated with the connection

provided by this logicalLink. If the TG number is unknown,

(uninitialized NULL) is provided.

Source

The TG number may be predefined with the TGN operand of the PU

Appendix F. VTAM topology agent attributes definition 343

statement in system definition or may be dynamically assigned if not

predefined. Not all PUs represented as logicalLinks will have TG numbers

(for example, PU T1). PUs or link stations with the TG defined as ANY,

where the TG number has not been negotiated, will return uninitialized

NULL.

Operations

GET

Attribute of

logicalLink

underlyingConnectionNames

Syntax

SET OF ObjectInstance

Meaning

For a port object, this is always the null set.

 For a logicalLink object, this represents the port that the logicalLink is

subordinate to. If unknown, the null set is provided.

Source

For non-switched PUs, this is always the port object representing the LINE

that the physical unit is defined under. For switched PUs, this attribute

will not be known if the PU is not dialed.

Operations

GET

Attribute of

logicalLink

port

userLabel

Syntax

GraphicString

Meaning

For logicalUnit objects that represent VTAM applications, this attribute

contains the name of the application ACB. For CDRSC objects, this

attribute contains the name of the CDRSC LUALIAS name if coded. For all

other logicalUnit and CDRSC objects this attribute is the null string.

Source

VTAM applications define the ACB name on the ACBNAME operand of

the APPL statement in a VTAM application program major node. The

CDRSC LUALIAS name is coded on the LUALIAS operand of the CDRSC

statement for a predefined CDRSC.

Operations

GET, SNAPSHOT (luCollection)

Attribute of

CDRSC

logicalUnit

unknownStatus

Syntax

BOOLEAN

TRUE Unknown status

FALSE

Status is known

344 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

OCTET: X'00'= FALSE

X'01'= TRUE

X'FF'= no change

 BOOLEAN is used for GET and NOTIFICATION operations.

 OCTET is used for snapshot operations.

Meaning

OSI state unknown status.

Source

Determined from VTAM resource definition table entry (RDTE) finite state

machine (FSM) state or SNA control vector 45, subfield 80 depending on

resource type.

Operations

GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of

all objects except luGroup

usageState

Syntax

ENUMERATED { idle,

active,

busy }

OCTET: X'00'= idle

X'01'= active

X'02'= busy

X'FF'= no change

Meaning

OSI state usage state

Source

Determined from VTAM resource definition table entry (RDTE) finite state

machine (FSM) state or SNA control vector 45, subfield 80 depending on

resource type.

Operations

GET

Attribute of

appnNN

port

appnRegisteredLu

t2-1Node

t4Node

t5Node

Appendix F. VTAM topology agent attributes definition 345

346 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix G. VTAMTOPO filtering option reporting

Table 42 on page 347 summarizes the results of using the VTAMTOPO filtering

option for reporting a switched PU under an NCP.

The following is the legend for the table:

notIGNR/INCL

Neither IGNORE or INCLUDE specified.

r VTAMTOPO= not specified, REPORT inherited from node above.

R VTAMTOPO=REPORT specified (or NOLLINES at containing GROUP).

nr VTAMTOPO= not specified, NOREPORT inherited from node above.

NR VTAMTOPO=NOREPORT specified (or NOSWPUS at containing GROUP).

NotRep

Switched PU is not reported.

IGNR VTAMTOPO=IGNORE specified at designated major node.

INCL VTAMTOPO=INCLUDE specified at the designated major node.

any Value of VTAMTOPO= does not matter, inclusion not specified.

R-NCP

Switched PU is reported under the NCP under which the Switched PU is

connected.

R-SSCP

Switched PU is reported under the SSCP directly (not under any NCP), as

it is when it is not connected.

Notes:

1. Values shown are assumed to be set in the applicable major node, individual

PUX or SW PU before the connection is established. A MODIFY VTAMTOPO to

set these values after the connection is established may not show the expected

result before the connection is taken down and reestablished.

2. This table can also be used for the Switched PUs that are connected under an

XCA. In the results column, all R-NCP will be R-SSCP, since the XCA is not

represented by a PU type, and does not appear as a discrete node in SNA local

topology.

3. The PUX is a place holder for a future connected switched PU under the

switched line. It takes its VTAMTOPO value either explicitly from the line

GROUP value, or implicitly from the NCP or the XCA major node value. If its

VTAMTOPO value is explicitly set, it cannot be modified.

 Table 42. Connected switched PU report

VTAMTOPO value on SPWU result

NCP PUX SWND SWPU

notIGNR/INCL r/R R r R-NCP

notIGNR/INCL r/R INCL r R-NCP

notIGNR/INCL r/R R R R-NCP

notIGNR/INCL r/R INCL R R-NCP

© Copyright IBM Corp. 1995, 2005 347

Table 42. Connected switched PU report (continued)

VTAMTOPO value on SPWU result

NCP PUX SWND SWPU

notIGNR/INCL r/R R NR NotRep

notIGNR/INCL r/R INCL NR R-NCP

notIGNR/INCL r/R NR nr R-NCP

notIGNR/INCL r/R IGNR nr R-NCP

notIGNR/INCL r/R NR NR NotRep

notIGNR/INCL r/R IGNR NR NotRep

notIGNR/INCL r/R NR R R-NCP

notIGNR/INCL r/R IGNR R R-NCP

notIGNR/INCL nr/NR R r R-SSCP

notIGNR/INCL nr/NR INCL r R-SSCP

notIGNR/INCL nr/NR R R R-NCP

notIGNR/INCL nr/NR INCL R R-SSCP

notIGNR/INCL nr/NR R NR NotRep

notIGNR/INCL nr/NR INCL NR R-SSCP

notIGNR/INCL nr/NR NR nr NotRep

notIGNR/INCL nr/NR IGNR nr NotRep

notIGNR/INCL nr/NR NR NR NotRep

notIGNR/INCL nr/NR IGNR NR NotRep

notIGNR/INCL nr/NR NR R R-NCP

notIGNR/INCL nr/NR IGNR R NotRep

INCL any R r R-NCP

INCL any INCL r R-NCP

INCL any R R R-NCP

INCL any INCL R R-NCP

INCL any R NR NotRep

INCL any INCL NR R-NCP

INCL any NR nr R-NCP

INCL any IGNR nr R-NCP

INCL any NR NR NotRep

INCL any IGNR NR NotRep

INCL any NR R R-NCP

INCL any IGNR R R-NCP

IGNR any R r R-SSCP

IGNR any INCL r R-SSCP

IGNR any R R R-SSCP

IGNR any INCL R R-SSCP

IGNR any R NR NotRep

IGNR any INCL NR R-SSCP

IGNR any NR nr NotRep

348 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 42. Connected switched PU report (continued)

VTAMTOPO value on SPWU result

NCP PUX SWND SWPU

IGNR any IGNR nr NotRep

IGNR any NotRep NotRep NotRep

IGNR any IGNR NR NotRep

IGNR any NR R R-SSCP

IGNR any IGNR R NotRep

Appendix G. VTAMTOPO filtering option reporting 349

350 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix H. Architectural specifications

This appendix lists documents that provide architectural specifications for the SNA

Protocol.

The APPN Implementers’ Workshop (AIW) architecture documentation includes

the following architectural specifications for SNA APPN and HPR:

v APPN Architecture Reference (SG30-3422-04)

v APPN Branch Extender Architecture Reference Version 1.1

v APPN Dependent LU Requester Architecture Reference Version 1.5

v APPN Extended Border Node Architecture Reference Version 1.0

v APPN High Performance Routing Architecture Reference Version 4.0

v SNA Formats (GA27-3136-19)

v SNA Technical Overview (GC30-3073-04)

For more information, refer to the AIW documentation page at

http://nhdidd.raleigh.ibm.com/app/aiwdoc.htm.

The following RFC also contains SNA architectural specifications:

v RFC 2353 APPN/HPR in IP Networks APPN Implementers’ Workshop Closed Pages

Document

RFCs can be obtained from:

Government Systems, Inc.

Attn: Network Information Center

14200 Park Meadow Drive

Suite 200

Chantilly, VA 22021

Many RFCs are available online. Hardcopies of all RFCs are available from the

NIC, either individually or by subscription. Online copies are available using FTP

from the NIC at http://www.rfc-editor.org/rfc.html.

Use FTP to download the files, using the following format:

RFC:RFC-INDEX.TXT

RFC:RFCnnnn.TXT

RFC:RFCnnnn.PS

where:

v nnnn is the RFC number.

v TXT is the text format.

v PS is the postscript format.

You can also request RFCs through electronic mail, from the automated NIC mail

server, by sending a message to service@nic.ddn.mil with a subject line of

RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.

To request a copy of the RFC index, send a message with a subject line of

RFC INDEX.

For more information, contact nic@nic.ddn.mil.

© Copyright IBM Corp. 1995, 2005 351

http://www.rfc-editor.org/rfc.html

352 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix I. Related protocol specifications (RFCs)

This appendix lists the related protocol specifications for TCP/IP. The Internet

Protocol suite is still evolving through requests for comments (RFC). New

protocols are being designed and implemented by researchers and are brought to

the attention of the Internet community in the form of RFCs. Some of these

protocols are so useful that they become recommended protocols. That is, all future

implementations for TCP/IP are recommended to implement these particular

functions or protocols. These become the de facto standards, on which the TCP/IP

protocol suite is built.

You can request RFCs through electronic mail, from the automated Network

Information Center (NIC) mail server, by sending a message to

service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject

line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,

send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.

Attn: Network Information Center

14200 Park Meadow Drive

Suite 200

Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by

subscription. Online copies are available at the following Web address:

http://www.rfc-editor.org/rfc.html.

See “Internet drafts” on page 366 for draft RFCs implemented in this and previous

Communications Server releases.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

652 Telnet output carriage-return disposition option D. Crocker

653 Telnet output horizontal tabstops option D. Crocker

654 Telnet output horizontal tab disposition option D. Crocker

655 Telnet output formfeed disposition option D. Crocker

657 Telnet output vertical tab disposition option D. Crocker

658 Telnet output linefeed disposition D. Crocker

698 Telnet extended ASCII option T. Mock

726 Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker

727 Telnet logout option M.R. Crispin

732 Telnet Data Entry Terminal option J.D. Day

733 Standard for the format of ARPA network text messages D. Crocker, J. Vittal,

K.T. Pogran, D.A. Henderson

© Copyright IBM Corp. 1995, 2005 353

||

||

||

||

||

||

||

||

||

||

||
|

http://www.rfc-editor.org/rfc.html

734 SUPDUP Protocol M.R. Crispin

735 Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

736 Telnet SUPDUP option M.R. Crispin

749 Telnet SUPDUP—Output option B. Greenberg

765 File Transfer Protocol specification J. Postel

768 User Datagram Protocol J. Postel

779 Telnet send-location option E. Killian

783 TFTP Protocol (revision 2) K.R. Sollins

791 Internet Protocol J. Postel

792 Internet Control Message Protocol J. Postel

793 Transmission Control Protocol J. Postel

820 Assigned numbers J. Postel

821 Simple Mail Transfer Protocol J. Postel

822 Standard for the format of ARPA Internet text messages D. Crocker

823 DARPA Internet gateway R. Hinden, A. Sheltzer

826 Ethernet Address Resolution Protocol: Or converting network protocol addresses

to 48.bit Ethernet address for transmission on Ethernet hardware D. Plummer

854 Telnet Protocol Specification J. Postel, J. Reynolds

855 Telnet Option Specification J. Postel, J. Reynolds

856 Telnet Binary Transmission J. Postel, J. Reynolds

857 Telnet Echo Option J. Postel, J. Reynolds

858 Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

859 Telnet Status Option J. Postel, J. Reynolds

860 Telnet Timing Mark Option J. Postel, J. Reynolds

861 Telnet Extended Options: List Option J. Postel, J. Reynolds

862 Echo Protocol J. Postel

863 Discard Protocol J. Postel

864 Character Generator Protocol J. Postel

865 Quote of the Day Protocol J. Postel

868 Time Protocol J. Postel, K. Harrenstien

877 Standard for the transmission of IP datagrams over public data networks J.T.

Korb

883 Domain names: Implementation specification P.V. Mockapetris

884 Telnet terminal type option M. Solomon, E. Wimmers

885 Telnet end of record option J. Postel

894 Standard for the transmission of IP datagrams over Ethernet networks C. Hornig

896 Congestion control in IP/TCP internetworks J. Nagle

354 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||

||

||

||

||

||

||

||

||

||

||
|

||

||

903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul, M.

Theimer

904 Exterior Gateway Protocol formal specification D. Mills

919 Broadcasting Internet Datagrams J. Mogul

922 Broadcasting Internet datagrams in the presence of subnets J. Mogul

927 TACACS user identification Telnet option B.A. Anderson

933 Output marking Telnet option S. Silverman

946 Telnet terminal location number option R. Nedved

950 Internet Standard Subnetting Procedure J. Mogul, J. Postel

951 Bootstrap Protocol W.J. Croft, J. Gilmore

952 DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler

959 File Transfer Protocol J. Postel, J.K. Reynolds

961 Official ARPA-Internet protocols J.K. Reynolds, J. Postel

974 Mail routing and the domain system C. Partridge

1001 Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and

methods NetBios Working Group in the Defense Advanced Research

Projects Agency, Internet Activities Board, End-to-End Services Task Force

1002 Protocol Standard for a NetBIOS service on a TCP/UDP transport: Detailed

specifications NetBios Working Group in the Defense Advanced Research

Projects Agency, Internet Activities Board, End-to-End Services Task Force

1006 ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass

1009 Requirements for Internet gateways R. Braden, J. Postel

1011 Official Internet protocols J. Reynolds, J. Postel

1013 X Window System Protocol, version 11: Alpha update April 1987 R. Scheifler

1014 XDR: External Data Representation standard Sun Microsystems

1027 Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J.

Quarterman

1032 Domain administrators guide M. Stahl

1033 Domain administrators operations guide M. Lottor

1034 Domain names—concepts and facilities P.V. Mockapetris

1035 Domain names—implementation and specification P.V. Mockapetris

1038 Draft revised IP security option M. St. Johns

1041 Telnet 3270 regime option Y. Rekhter

1042 Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel,

J. Reynolds

1043 Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T.

Thompson

1044 Internet Protocol on Network System’s HYPERchannel: Protocol specification K.

Hardwick, J. Lekashman

1053 Telnet X.3 PAD option S. Levy, T. Jacobson

Appendix I. Related protocol specifications (RFCs) 355

||

||

||

||

||

||

||
|

||

1055 Nonstandard for transmission of IP datagrams over serial lines: SLIP J. Romkey

1057 RPC: Remote Procedure Call Protocol Specification: Version 2 Sun Microsystems

1058 Routing Information Protocol C. Hedrick

1060 Assigned numbers J. Reynolds, J. Postel

1067 Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, J.

Davin

1071 Computing the Internet checksum R.T. Braden, D.A. Borman, C. Partridge

1072 TCP extensions for long-delay paths V. Jacobson, R.T. Braden

1073 Telnet window size option D. Waitzman

1079 Telnet terminal speed option C. Hedrick

1085 ISO presentation services on top of TCP/IP based internets M.T. Rose

1091 Telnet terminal-type option J. VanBokkelen

1094 NFS: Network File System Protocol specification Sun Microsystems

1096 Telnet X display location option G. Marcy

1101 DNS encoding of network names and other types P. Mockapetris

1112 Host extensions for IP multicasting S.E. Deering

1113 Privacy enhancement for Internet electronic mail: Part I — message encipherment

and authentication procedures J. Linn

1118 Hitchhikers Guide to the Internet E. Krol

1122 Requirements for Internet Hosts—Communication Layers R. Braden, Ed.

1123 Requirements for Internet Hosts—Application and Support R. Braden, Ed.

1146 TCP alternate checksum options J. Zweig, C. Partridge

1155 Structure and identification of management information for TCP/IP-based

internets M. Rose, K. McCloghrie

1156 Management Information Base for network management of TCP/IP-based internets

K. McCloghrie, M. Rose

1157 Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.

Schoffstall, J. Davin

1158 Management Information Base for network management of TCP/IP-based

internets: MIB-II M. Rose

1166 Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

1179 Line printer daemon protocol L. McLaughlin

1180 TCP/IP tutorial T. Socolofsky, C. Kale

1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.

Mockapetris

1184 Telnet Linemode Option D. Borman

1186 MD4 Message Digest Algorithm R.L. Rivest

1187 Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

1188 Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D.

Katz

356 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||
|

||

||

||

||

||
|

||

||

||
|

||

1190 Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

1191 Path MTU discovery J. Mogul, S. Deering

1198 FYI on the X window system R. Scheifler

1207 FYI on Questions and Answers: Answers to commonly asked “experienced

Internet user” questions G. Malkin, A. Marine, J. Reynolds

1208 Glossary of networking terms O. Jacobsen, D. Lynch

1213 Management Information Base for Network Management of TCP/IP-based

internets: MIB-II K. McCloghrie, M.T. Rose

1215 Convention for defining traps for use with the SNMP M. Rose

1227 SNMP MUX protocol and MIB M.T. Rose

1228 SNMP-DPI: Simple Network Management Protocol Distributed Program Interface

G. Carpenter, B. Wijnen

1229 Extensions to the generic-interface MIB K. McCloghrie

1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

1236 IP to X.121 address mapping for DDN L. Morales, P. Hasse

1256 ICMP Router Discovery Messages S. Deering, Ed.

1267 Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

1269 Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S.

Willis, J. Burruss

1270 SNMP Communications Services F. Kastenholz, ed.

1285 FDDI Management Information Base J. Case

1315 Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C.

Carvalho

1321 The MD5 Message-Digest Algorithm R. Rivest

1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

1325 FYI on Questions and Answers: Answers to Commonly Asked ″New Internet

User″ Questions G. Malkin, A. Marine

1327 Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

1340 Assigned Numbers J. Reynolds, J. Postel

1344 Implications of MIME for Internet Mail Gateways N. Bornstein

1349 Type of Service in the Internet Protocol Suite P. Almquist

1350 The TFTP Protocol (Revision 2) K.R. Sollins

1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

1353 Definitions of Managed Objects for Administration of SNMP Parties K.

McCloghrie, J. Davin, J. Galvin

1354 IP Forwarding Table MIB F. Baker

Appendix I. Related protocol specifications (RFCs) 357

||

||

||

||

||
|

||

||

1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D.

Robinson, R. Ullmann

1358 Charter of the Internet Architecture Board (IAB) L. Chapin

1363 A Proposed Flow Specification C. Partridge

1368 Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K.

McCloghrie

1372 Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

1387 RIP Version 2 Protocol Analysis G. Malkin

1388 RIP Version 2 Carrying Additional Information G. Malkin

1389 RIP Version 2 MIB Extensions G. Malkin, F. Baker

1390 Transmission of IP and ARP over FDDI Networks D. Katz

1393 Traceroute Using an IP Option G. Malkin

1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.

Kastenholz

1408 Telnet Environment Option D. Borman, Ed.

1413 Identification Protocol M. St. Johns

1416 Telnet Authentication Option D. Borman, ed.

1420 SNMP over IPX S. Bostock

1428 Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil

1442 Structure of Management Information for version 2 of the Simple Network

Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

1443 Textual Conventions for version 2 of the Simple Network Management Protocol

(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1445 Administrative Model for version 2 of the Simple Network Management Protocol

(SNMPv2) J. Galvin, K. McCloghrie

1447 Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)

K. McCloghrie, J. Galvin

1448 Protocol Operations for version 2 of the Simple Network Management Protocol

(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1464 Using the Domain Name System to Store Arbitrary String Attributes R.

Rosenbaum

1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

1497 BOOTP Vendor Information Extensions J. Reynolds

1514 Host Resources MIB P. Grillo, S. Waldbusser

1516 Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster,

K. McCloghrie

358 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||

||
|

||

||

||

||

||
|
|

||
|

||
|

||
|

||
|

||

||

||
|

1521 MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for

Specifying and Describing the Format of Internet Message Bodies N. Borenstein,

N. Freed

1533 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

1534 Interoperation Between DHCP and BOOTP R. Droms

1535 A Security Problem and Proposed Correction With Widely Deployed DNS

Software E. Gavron

1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel,

C. Neuman, P. Danzig, S. Miller

1537 Common DNS Data File Configuration Errors P. Beertema

1540 Internet Official Protocol Standards J. Postel

1541 Dynamic Host Configuration Protocol R. Droms

1542 Clarifications and Extensions for the Bootstrap Protocol W. Wimer

1571 Telnet Environment Option Interoperability Issues D. Borman

1572 Telnet Environment Option S. Alexander

1573 Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

1577 Classical IP and ARP over ATM M. Laubach

1583 OSPF Version 2 J. Moy

1591 Domain Name System Structure and Delegation J. Postel

1592 Simple Network Management Protocol Distributed Protocol Interface Version 2.0

B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

1594 FYI on Questions and Answers— Answers to Commonly Asked ″New Internet

User″ Questions A. Marine, J. Reynolds, G. Malkin

1644 T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

1646 TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M.

Angel

1647 TN3270 Enhancements B. Kelly

1652 SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M.

Rose, E. Stefferud, D. Crocker

1664 Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C.

Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

1693 An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

1695 Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2

M. Ahmed, K. Tesink

1701 Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P. Traina

1702 Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.

Farinacci, P. Traina

1706 DNS NSAP Resource Records B. Manning, R. Colella

1712 DNS Encoding of Geographical Location C. Farrell, M. Schulze, S. Pleitner D.

Baldoni

1713 Tools for DNS debugging A. Romao

Appendix I. Related protocol specifications (RFCs) 359

||
|
|

||

||

||
|

||
|

||

||

||
|

||
|

1723 RIP Version 2—Carrying Additional Information G. Malkin

1752 The Recommendation for the IP Next Generation Protocol S. Bradner, A. Mankin

1766 Tags for the Identification of Languages H. Alvestrand

1771 A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

1794 DNS Support for Load Balancing T. Brisco

1819 Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version ST2+ L.

Delgrossi, L. Berger Eds.

1826 IP Authentication Header R. Atkinson

1828 IP Authentication using Keyed MD5 P. Metzger, W. Simpson

1829 The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

1830 SMTP Service Extensions for Transmission of Large and Binary MIME Messages

G. Vaudreuil

1832 XDR: External Data Representation Standard R. Srinivasan

1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

1854 SMTP Service Extension for Command Pipelining N. Freed

1869 SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud, D.

Crocker

1870 SMTP Service Extension for Message Size Declaration J. Klensin, N. Freed, K.

Moore

1876 A Means for Expressing Location Information in the Domain Name System C.

Davis, P. Vixie, T. Goodwin, I. Dickinson

1883 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

1884 IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

1888 OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.

Houldsworth, A. Lloyd

1891 SMTP Service Extension for Delivery Status Notifications K. Moore

1892 The Multipart/Report Content Type for the Reporting of Mail System

Administrative Messages G. Vaudreuil

1894 An Extensible Message Format for Delivery Status NotificationsK. Moore, G.

Vaudreuil

1901 Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M. Rose,

S. Waldbusser

1902 Structure of Management Information for Version 2 of the Simple Network

Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.

Waldbusser

1903 Textual Conventions for Version 2 of the Simple Network Management Protocol

(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1904 Conformance Statements for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1905 Protocol Operations for Version 2 of the Simple Network Management Protocol

(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

360 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||

||

||
|

||

||

||

||
|

||

||
|

||
|

||

||

||
|

||

||
|

||
|

1906 Transport Mappings for Version 2 of the Simple Network Management Protocol

(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1907 Management Information Base for Version 2 of the Simple Network Management

Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1908 Coexistence between Version 1 and Version 2 of the Internet-standard Network

Management Framework J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1912 Common DNS Operational and Configuration Errors D. Barr

1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.

Karrenberg, G.J. de Groot, E. Lear

1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,

L. Jones

1930 Guidelines for creation, selection, and registration of an Autonomous System (AS)

J. Hawkinson, T. Bates

1939 Post Office Protocol-Version 3 J. Myers, M. Rose

1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

1982 Serial Number Arithmetic R. Elz, R. Bush

1985 SMTP Service Extension for Remote Message Queue Starting J. De Winter

1995 Incremental Zone Transfer in DNS M. Ohta

1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P. Vixie

2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

2011 SNMPv2 Management Information Base for the Internet Protocol using SMIv2

K. McCloghrie, Ed.

2012 SNMPv2 Management Information Base for the Transmission Control Protocol

using SMIv2 K. McCloghrie, Ed.

2013 SNMPv2 Management Information Base for the User Datagram Protocol using

SMIv2 K. McCloghrie, Ed.

2018 TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A.

Romanow

2026 The Internet Standards Process — Revision 3 S. Bradner

2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI D.

Mills

2033 Local Mail Transfer Protocol J. Myers

2034 SMTP Service Extension for Returning Enhanced Error CodesN. Freed

2040 The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR. Baldwin, R.

Rivest

2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet

Message Bodies N. Freed, N. Borenstein

2052 A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen,

P. Vixie

2065 Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman

2066 TELNET CHARSET Option R. Gellens

2080 RIPng for IPv6 G. Malkin, R. Minnear

Appendix I. Related protocol specifications (RFCs) 361

||
|

||

||
|

||

||

||

||
|

||
|

||

2096 IP Forwarding Table MIB F. Baker

2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare,

R. Canetti

2119 Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

2132 DHCP Options and BOOTP Vendor Extensions S. Alexander, R. Droms

2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound,

W. Stevens

2136 Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed.,

S. Thomson, Y. Rekhter, J. Bound

2137 Secure Domain Name System Dynamic Update D. Eastlake 3rd

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address

Mapping (MCGAM) C. Allocchio

2168 Resolution of Uniform Resource Identifiers using the Domain Name System R.

Daniel, M. Mealling

2178 OSPF Version 2 J. Moy

2181 Clarifications to the DNS Specification R. Elz, R. Bush

2205 Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification R.

Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin

2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

2211 Specification of the Controlled-Load Network Element Service J. Wroclawski

2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.

Guerin

2215 General Characterization Parameters for Integrated Service Network Elements S.

Shenker, J. Wroclawski

2217 Telnet Com Port Control Option G. Clarke

2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

2228 FTP Security Extensions M. Horowitz, S. Lunt

2230 Key Exchange Delegation Record for the DNS R. Atkinson

2233 The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

2240 A Legal Basis for Domain Name Allocation O. Vaughn

2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

2251 Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation of

Distinguished Names M. Wahl, S. Kille, T. Howes

2254 The String Representation of LDAP Search Filters T. Howes

2261 An Architecture for Describing SNMP Management Frameworks D. Harrington,

R. Presuhn, B. Wijnen

2262 Message Processing and Dispatching for the Simple Network Management

Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2271 An Architecture for Describing SNMP Management Frameworks D. Harrington,

R. Presuhn, B. Wijnen

362 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||

||

||
|

||

||
|

||
|

||
|

2273 SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

2274 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2275 View-based Access Control Model (VACM) for the Simple Network Management

Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2292 Advanced Sockets API for IPv6 W. Stevens, M. Thomas

2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

2320 Definitions of Managed Objects for Classical IP and ARP Over ATM Using

SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

2328 OSPF Version 2 J. Moy

2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G. Oglesby

2352 A Convention for Using Legal Names as Domain Names O. Vaughn

2355 TN3270 Enhancements B. Kelly

2358 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.

Johnson

2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O’Dell, S.

Deering

2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

2385 Protection of BGP Sessions via the TCP MD5 Signature OptionA. Hefferman

2389 Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz

2401 Security Architecture for Internet Protocol S. Kent, R. Atkinson

2402 IP Authentication Header S. Kent, R. Atkinson

2403 The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

2404 The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn

2405 The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.

Doraswamy

2406 IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

2407 The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

2408 Internet Security Association and Key Management Protocol (ISAKMP) D.

Maughan, M. Schertler, M. Schneider, J. Turner

2409 The Internet Key Exchange (IKE) D. Harkins, D. Carrel

2410 The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,

2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

2445 Internet Calendaring and Scheduling Core Object Specification (iCalendar) F.

Dawson, D. Stenerson

2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley,

W. Ford, W. Polk, D. Solo

2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

Appendix I. Related protocol specifications (RFCs) 363

||

||
|

||
|

||

||
|

||

||

||
|

||
|

||
|

2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.

Simpson

2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6

(IPv6) Specification A. Conta, S. Deering

2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

2466 Management Information Base for IP Version 6: ICMPv6 Group D. Haskin, S.

Onishi

2476 Message Submission R. Gellens, J. Klensin

2487 SMTP Service Extension for Secure SMTP over TLS P. Hoffman

2505 Anti-Spam Recommendations for SMTP MTAs G. Lindberg

2523 Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

2535 Domain Name System Security Extensions D. Eastlake 3rd

2538 Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O.

Gudmundsson

2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake

3rd

2540 Detached Domain Name System (DNS) Information D. Eastlake 3rd

2554 SMTP Service Extension for Authentication J. Myers

2570 Introduction to Version 3 of the Internet-standard Network Management

Framework J. Case, R. Mundy, D. Partain, B. Stewart

2571 An Architecture for Describing SNMP Management Frameworks B. Wijnen, D.

Harrington, R. Presuhn

2572 Message Processing and Dispatching for the Simple Network Management

Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

2574 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

2575 View-based Access Control Model (VACM) for the Simple Network Management

Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

2576 Co-Existence between Version 1, Version 2, and Version 3 of the Internet-standard

Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

2578 Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.

Perkins, J. Schoenwaelder

2579 Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

2580 Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.

Schoenwaelder

2581 TCP Congestion Control M. Allman, V. Paxson, W. Stevens

2583 Guidelines for Next Hop Client (NHC) Developers R. Carlson, L. Winkler

2591 Definitions of Managed Objects for Scheduling Management Operations D. Levi,

J. Schoenwaelder

2625 IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W. Rickard

364 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||
|

||
|

||

||

||
|

||

||

||

||
|

||

||

||
|

||

2635 Don’t SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings

(spam*) S. Hambridge, A. Lunde

2637 Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J. Taarud,

W. Little, G. Zorn

2640 Internationalization of the File Transfer Protocol B. Curtin

2665 Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.

Johnson

2671 Extension Mechanisms for DNS (EDNS0) P. Vixie

2672 Non-Terminal DNS Name Redirection M. Crawford

2675 IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.

Haberman

2711 IPv6 Router Alert Option C. Partridge, A. Jackson

2740 OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

2753 A Framework for Policy-based Admission Control R. Yavatkar, D. Pendarakis,

R. Guerin

2758 Definitions of Managed Objects for Service Level Agreements Performance

Monitoring K. White

2782 A DNS RR for specifying the location of services (DNS SRV) A. Gubrandsen, P.

Vixix, L. Esibov

2821 Simple Mail Transfer Protocol J. Klensin, Ed.

2822 Internet Message Format P. Resnick, Ed.

2840 TELNET KERMIT OPTION J. Altman, F. da Cruz

2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.

Gudmundsson, D. Eastlake 3rd, B. Wellington

2851 Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,

S. Routhier, J. Schoenwaelder

2852 Deliver By SMTP Service Extension D. Newman

2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.

Crawford, C. Huitema

2915 The Naming Authority Pointer (NAPTR) DNS Resource Record M. Mealling, R.

Daniel

2920 SMTP Service Extension for Command Pipelining N. Freed

2930 Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

2941 Telnet Authentication Option T. Ts’o, ed., J. Altman

2942 Telnet Authentication: Kerberos Version 5 T. Ts’o

2946 Telnet Data Encryption Option T. Ts’o

2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts’o

2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts’o

2992 Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

Appendix I. Related protocol specifications (RFCs) 365

||
|

||

||

||
|

||
|

||

||

||

||
|

||

||
|

||

||

||

3019 IP Version 6 Management Information Base for The Multicast Listener Discovery

Protocol B. Haberman, R. Worzella

3060 Policy Core Information Model—Version 1 Specification B. Moore, E. Ellesson, J.

Strassner, A. Westerinen

3152 Delegation of IP6.ARPA R. Bush

3291 Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,

S. Routhier, J. Schoenwaelder

3363 Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name

System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain

3390 Increasing TCP’s Initial Window M. Allman, S. Floyd, C. Partridge

3411 An Architecture for Describing Simple Network Management Protocol (SNMP)

Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

3412 Message Processing and Dispatching for the Simple Network Management

Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

3413 Simple Network Management Protocol (SNMP) Applications D. Levi, P. Meyer,

B. Stewart

3414 User-based Security Model (USM) for version 3 of the Simple Network

Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

3415 View-based Access Control Model (VACM) for the Simple Network Management

Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

3419 Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

3484 Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

3493 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, J.

McCann, W. Stevens

3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S.

Deering

3542 Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard

Stevens, M. Thomas, E. Nordmark, T. Jinmei

3658 Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

3715 IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba,

W. Dixon

3947 Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen,

V. Volpe

3948 UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe,

L. DiBurro, M. Stenberg

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force

(IETF), its areas, and its working groups. Other groups may also distribute

working documents as Internet drafts. You can see Internet drafts at

http://www.ietf.org/ID.html.

Several areas of IPv6 implementation include elements of the following Internet

drafts and are subject to change during the RFC review process.

366 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

||
|

||

||
|

||

||

||
|

||
|

||
|

http://www.ietf.org/ID.html

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6

(IPv6) Specification

A. Conta, S. Deering

Appendix I. Related protocol specifications (RFCs) 367

368 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix J. Information APARs

This appendix lists information APARs for IP and SNA documents.

Notes:

1. Information APARs contain updates to previous editions of the manuals listed

below. Documents updated for V1R7 are complete except for the updates

contained in the information APARs that might be issued after V1R7

documents went to press.

2. Information APARs are predefined for z/OS V1R7 Communications Server and

might not contain updates.

3. Information APARs for z/OS documents are in the document called z/OS and

z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/

BOOKS/ZIDOCMST/CCONTENTS.

Information APARs for IP documents

Table 43 lists information APARs for IP documents. For information APARs for

V1R7, see http://www.ibm.com/support/docview.wss?uid=swg21178966.

 Table 43. IP information APARs for z/OS Communications Server

Title V1R6 V1R5 V1R4

New Function Summary (both IP and SNA) II13824

Quick Reference (both IP and SNA) II13831 II13246

IP and SNA Codes II13842 II13254

IP API Guide II13844 II13577 II13255

II13790

IP CICS® Sockets Guide II13578 II13257

IP Configuration Guide II13826 II13568 II13244

II13541

II13652

II13646

IP Configuration Reference II13827 II13569

II13789

II13245

II13521

II13647

II13739

IP Diagnosis II13836 II13571 II13249

II13493

IP Messages Volume 1 II13838 II13572 II13624

II13250

IP Messages Volume 2 II13839 II13573 II13251

IP Messages Volume 3 II13840 II13574 II13252

IP Messages Volume 4 II13841 II13575 II13253

II13628

IP Migration II13566 II13242

II13738

IP Network and Application Design Guide II13825 II13567 II13243

© Copyright IBM Corp. 1995, 2005 369

|
|

||

||||

||||

||||

||||

||||
|

||||

||||
|
|
|

|||
|
|
|
|
|

||||
|

||||
|

||||

||||

||||
|

||||
|

||||

http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 43. IP information APARs for z/OS Communications Server (continued)

Title V1R6 V1R5 V1R4

IP Network Print Facility

IP Programmer’s Reference II13843 II13581 II13256

IP User’s Guide and Commands II13832 II13570 II13247

IP System Admin Commands II13833 II13580 II13248

II13792

Information APARs for SNA documents

Table 44 lists information APARs for SNA documents. For information APARs for

V1R7, see http://www.ibm.com/support/docview.wss?uid=swg21178966.

 Table 44. SNA information APARs for z/OS Communications Server

Title V1R6 V1R5 V1R4

New Function Summary (both IP and

SNA)

II13824

Quick Reference (both IP and SNA) II13831 II13246

IP and SNA Codes II13842 II13254

SNA Customization II13857 II13560 II13240

SNA Diagnosis II13558 II13236

II13735

SNA Diagnosis, Vol. 1: Techniques and

Procedures

II13852

SNA Diagnosis, Vol. 2: FFST Dumps and

the VIT

II13853

SNA Messages II13854 II13559 II13238

II13736

SNA Network Implementation Guide II13849 II13555 II13234

II13733

SNA Operation II13851 II13557 II13237

SNA Migration II13554 II13233

II13732

SNA Programming II13858 II13241

SNA Resource Definition Reference II13850 II13556 II13235

II13734

SNA Data Areas, Vol. 1 and 2 II13239

SNA Data Areas, 1 II13855

SNA Data Areas, 2 II13856

Other information APARs

Table 45 lists information APARs not related to documents.

 Table 45. Non-document information APARs

Content Number

Index to APARs that list recommended VTAM maintenance II11220

370 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

|

||||

||||

||||

||||

||||
|
|

|
|

||

||||

|
|
|||

||||

||||

||||

||||
|

|
|
|||

|
|
|||

||||
|

||||
|

||||

||||
|

||||

||||
|

||||

||||

||||
|

||

http://www.ibm.com/support/docview.wss?uid=swg21178966

Table 45. Non-document information APARs (continued)

Content Number

Index to APARs that list trace and dump requests for VTAM problems II13202

Index of Communication Server IP information APARs II12028

MPC and CTC II01501

Collecting TCPIP CTRACEs II12014

CSM for VTAM II13442

CSM for TCP/IP II13951

DLUR/DLUS for z/OS V1R2, V1R4, and V1R5 II12986, II13456, and II13783

DOCUMENTATION REQUIRED FOR OSA/2, OSA EXPRESS AND OSA

QDIO

II13016

DYNAMIC VIPA (BIND) II13215

DNS — common problems and solutions II13453

Enterprise Extender II12223

FTPing doc to z/OS Support II12030

FTP problems II12079

Generic resources II10986

HPR II10953

iQDIO II13142

LPR problems II12022

MNPS II10370

NCPROUTE problems II12025

OMPROUTE II12026

PASCAL API II11814

Performance II11710

II11711

II11712

Resolver II13398

II13399

II13452

Socket API II11996

II12020

SMTP problems II12023

SNMP II13477

II13478

SYSLOGD howto II12021

TCPIP connection states II12449

Telnet II11574

II13135

TN3270 TELNET SSL common problems II13369

Appendix J. Information APARs 371

||

||

||

||

||

||

372 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Appendix K. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1995, 2005 373

|
|

|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

374 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Notices

IBM may not offer all of the products, services, or features discussed in this

document. Consult your local IBM representative for information on the products

and services currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that IBM product,

program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation

of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1995, 2005 375

|

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Site Counsel

IBM Corporation

P.O. Box 12195

3039 Cornwallis Road

Research Triangle Park, North Carolina 27709-2195

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

376 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

IBM is required to include the following statements in order to distribute portions

of this document and the software described herein to which contributions have

been made by The University of California. Portions herein © Copyright 1979,

1980, 1983, 1986, Regents of the University of California. Reproduced by

permission. Portions herein were developed at the Electrical Engineering and

Computer Sciences Department at the Berkeley campus of the University of

California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,

Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©

1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the

Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights

Reserved.

Some portions of this publication relating to X Window System are Copyright ©

1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment

Corporation, and Hewlett-Packard Corporation portions of this software and its

documentation for any purpose without fee is hereby granted, provided that the

above copyright notice appears in all copies and that both that copyright notice

and this permission notice appear in supporting documentation, and that the

names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or

publicity pertaining to distribution of the software without specific, written prior

permission. M.I.T., Digital, and Hewlett-Packard make no representation about the

suitability of this software for any purpose. It is provided ″as is″ without express

or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

Notices 377

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

This product includes software developed by the University of

California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS

IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code

originating from the software program ″Popper.″ Popper is Copyright ©1989-1991

The Regents of the University of California, All Rights Reserved. Popper was

created by Austin Shelton, Information Systems and Technology, University of

California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,

and distribute the ″Popper″ software contained herein for any purpose, without

fee, and without a written agreement is hereby granted, provided that the above

copyright notice and this paragraph and the following two paragraphs appear in

all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY

FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR

MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY

PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE

POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS

DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN ″AS

IS″ BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS

TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR

MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.

378 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Redistribution and use in source and binary forms are permitted provided that the

above copyright notice and this paragraph are duplicated in all such forms and

that any documentation, advertising materials, and other materials related to such

distribution and use acknowledge that the software was developed by the

University of California, Berkeley. The name of the University may not be used to

endorse or promote products derived from this software without specific prior

written permission. THIS SOFTWARE IS PROVIDED ``AS IS’’ AND WITHOUT

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT

LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement:

This product includes software developed by the University of

California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS

IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific

license from the United States Government. It is the responsibility of any person or

organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation,

and that the name of M.I.T. not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior permission. Furthermore

Notices 379

if you modify this software you must label your software as modified software and

not distribute it in such a fashion that it might be confused with the original M.I.T.

software. M.I.T. makes no representations about the suitability of this software for

any purpose. It is provided ″as is″ without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific

license from the United States Government. It is the responsibility of any person or

organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this

software and its documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation,

and that the name of FundsXpress not be used in advertising or publicity

pertaining to distribution of the software without specific, written prior

permission. FundsXpress makes no representations about the suitability of this

software for any purpose. It is provided ″as is″ without express or implied

warranty.

THIS SOFTWARE IS PROVIDED ``AS IS’’ AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with

or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies.

THE SOFTWARE IS PROVIDED ″AS IS″ AND INTERNET SOFTWARE

CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the

following conditions are adhered to. The following conditions apply to all code

found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the

SSL code. The SSL documentation included with this distribution is covered by the

same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are

not to be removed. If this package is used in a product, Eric Young should be

380 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

given attribution as the author of the parts of the library used. This can be in the

form of a textual message at program startup or in documentation (online or

textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must

display the following acknowledgement: ″This product includes cryptographic

software written by Eric Young (eay@cryptsoft.com)″. The word ’cryptographic’

can be left out if the routines from the library being used are not cryptographic

related.

4. If you include any Windows specific code (or a derivative thereof) from the

apps directory (application code) you must include acknowledgement:

″This product includes software written by Tim Hudson (tjh@cryptsoft.com)″

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS’’ AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

The license and distribution terms for any publicly available version or derivative

of this code cannot be changed. i.e. this code cannot simply be copied and put

under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with

or without fee is hereby granted, provided that the above copyright notice and this

permission notice appear in all copies.

THE SOFTWARE IS PROVIDED ″AS IS″ AND INTERNET SOFTWARE

CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Notices 381

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and

the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the ″Software″), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, provided that the

above copyright notice(s) and this permission notice appear in all copies of the

Software and that both the above copyright notice(s) and this permission notice

appear in supporting documentation.

THE SOFTWARE IS PROVIDED ″AS IS″, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE

FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used

in advertising or otherwise to promote the sale, use or other dealings in this

Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, photographs and color illustrations

may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains

BookManager and PDF formats of unlicensed books and the z/OS Licensed

Product Library (LK3T-4307), which contains BookManager and PDF formats of

licensed books.

382 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Programming interface information

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of z/OS Communications Server.

Notices 383

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 Advanced Peer-to-Peer Networking

 AFP

 AD/Cycle

 AIX

 AIX/ESA

 AnyNet

 APL2

 AS/400

 AT

 BookManager

 BookMaster

 C/370

 CICS

 CICS/ESA

 C/MVS

 Common User Access

 C Set ++

 CT

 CUA

 DB2

 DFSMSdfp

 DFSMShsm

 DFSMS/MVS

 DPI

 Domino

 DRDA

 Enterprise Systems Architecture/370

 ESCON

 eServer

 ES/3090

 ES/9000

 ES/9370

 EtherStreamer

 Extended Services

 FFST

 FFST/2

 First Failure Support Technology

 GDDM

 IBM

 IBMLink

 IMS

 IMS/ESA

 HiperSockets

 Language Environment

 LANStreamer

 Library Reader

 LPDA

 Micro Channel

 Multiprise

 MVS

 MVS/DFP

 MVS/ESA

 MVS/SP

 MVS/XA

 NetView

 Network Station

 Nways

 Notes

 OfficeVision/MVS

 OfficeVision/VM

 Open Class

 OS/2

 OS/390

 OS/400

 Parallel Sysplex

 PR/SM

 PROFS

 PS/2

 RACF

 Redbooks

 Resource Link

 RETAIN

 RISC System/6000

 RMF

 RS/6000

 S/370

 S/390

 S/390 Parallel Enterprise Server

 SAA

 SecureWay

 SP

 SP2

 SQL/DS

 System/360

 System/370

 System/390

 SystemView

 Tivoli

 TURBOWAYS

 VM/ESA

 VSE/ESA

 VTAM

 WebSphere

 XT

 z/Architecture

 z/OS

 zSeries

 z/VM

 400

 3090

 3890

DB2 and NetView are registered trademarks of International Business Machines

Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

384 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United

States and other countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 385

|
|

|
|

|
|

386 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Bibliography

z/OS Communications Server information

This section contains descriptions of the documents in the z/OS Communications Server library.

z/OS Communications Server documentation is available:

v Online at the z/OS Internet Library web page at

http://www.ibm.com/servers/eserver/zseries/zos/bkserv

v In softcopy on CD-ROM collections. See “Softcopy information” on page xviii.

z/OS Communications Server library

z/OS Communications Server documents are available on the CD-ROM accompanying z/OS (SK3T-4269

or SK3T-4307). Unlicensed documents can be viewed at the z/OS Internet library site.

Updates to documents are available on RETAIN® and in information APARs (info APARs). See

Appendix J, “Information APARs,” on page 369 for a list of the documents and the info APARs associated

with them.

Info APARs for z/OS documents are in the document called z/OS and z/OS.e DOC APAR and PTF

++HOLD Documentation which can be found at http://publibz.boulder.ibm.com:80/cgi-
bin/bookmgr_OS390/ BOOKS/ZIDOCMST/CCONTENTS.

Planning

 Title Number Description

z/OS Communications Server:

New Function Summary

GC31-8771 This document is intended to help you plan for new IP for SNA

function, whether you are migrating from a previous version or

installing z/OS for the first time. It summarizes what is new in

the release and identifies the suggested and required

modifications needed to use the enhanced functions.

z/OS Communications Server:

IPv6 Network and Application

Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It describes

concepts of z/OS Communications Server’s support of IPv6,

coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

 Title Number Description

z/OS Communications Server: IP

Configuration Guide

SC31-8775 This document describes the major concepts involved in

understanding and configuring an IP network. Familiarity with

the z/OS operating system, IP protocols, z/OS UNIX System

Services, and IBM Time Sharing Option (TSO) is recommended.

Use this document in conjunction with the z/OS Communications

Server: IP Configuration Reference.

© Copyright IBM Corp. 1995, 2005 387

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com:80/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server: IP

Configuration Reference

SC31-8776 This document presents information for people who want to

administer and maintain IP. Use this document in conjunction

with the z/OS Communications Server: IP Configuration Guide. The

information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications Server:

SNA Network Implementation

Guide

SC31-8777 This document presents the major concepts involved in

implementing an SNA network. Use this document in

conjunction with the z/OS Communications Server: SNA Resource

Definition Reference.

z/OS Communications Server:

SNA Resource Definition Reference

SC31-8778 This document describes each SNA definition statement, start

option, and macroinstruction for user tables. It also describes

NCP definition statements that affect SNA. Use this document in

conjunction with the z/OS Communications Server: SNA Network

Implementation Guide.

z/OS Communications Server:

SNA Resource Definition Samples

SC31-8836 This document contains sample definitions to help you

implement SNA functions in your networks, and includes

sample major node definitions.

z/OS Communications Server:

AnyNet SNA over TCP/IP

SC31-8832 This guide provides information to help you install, configure,

use, and diagnose SNA over TCP/IP.

z/OS Communications Server:

AnyNet Sockets over SNA

SC31-8831 This guide provides information to help you install, configure,

use, and diagnose sockets over SNA. It also provides

information to help you prepare application programs to use

sockets over SNA.

z/OS Communications Server: IP

Network Print Facility

SC31-8833 This document is for system programmers and network

administrators who need to prepare their network to route SNA,

JES2, or JES3 printer output to remote printers using TCP/IP

Services.

Operation

 Title Number Description

z/OS Communications Server: IP

User’s Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It

contains requests that allow a user to log on to a remote host

using Telnet, transfer data sets using FTP, send and receive

electronic mail, print on remote printers, and authenticate

network users.

z/OS Communications Server: IP

System Administrator’s Commands

SC31-8781 This document describes the functions and commands helpful in

configuring or monitoring your system. It contains system

administrator’s commands, such as TSO NETSTAT, PING,

TRACERTE and their UNIX counterparts. It also includes TSO

and MVS commands commonly used during the IP

configuration process.

z/OS Communications Server:

SNA Operation

SC31-8779 This document serves as a reference for programmers and

operators requiring detailed information about specific operator

commands.

z/OS Communications Server:

Quick Reference

SX75-0124 This document contains essential information about SNA and IP

commands.

388 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Customization

 Title Number Description

z/OS Communications Server:

SNA Customization

SC31-6854 This document enables you to customize SNA, and includes the

following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU

search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

 Title Number Description

z/OS Communications Server: IP

Sockets Application Programming

Interface Guide and Reference

SC31-8788 This document describes the syntax and semantics of program

source code necessary to write your own application

programming interface (API) into TCP/IP. You can use this

interface as the communication base for writing your own client

or server application. You can also use this document to adapt

your existing applications to communicate with each other using

sockets over TCP/IP.

z/OS Communications Server: IP

CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write

application programs for, and diagnose problems with the socket

interface for CICS using z/OS TCP/IP.

z/OS Communications Server: IP

IMS Sockets Guide

SC31-8830 This document is for programmers who want application

programs that use the IMS™ TCP/IP application development

services provided by IBM’s TCP/IP Services.

z/OS Communications Server: IP

Programmer’s Guide and Reference

SC31-8787 This document describes the syntax and semantics of a set of

high-level application functions that you can use to program

your own applications in a TCP/IP environment. These

functions provide support for application facilities, such as user

authentication, distributed databases, distributed processing,

network management, and device sharing. Familiarity with the

z/OS operating system, TCP/IP protocols, and IBM Time

Sharing Option (TSO) is recommended.

z/OS Communications Server:

SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to

send data to and receive data from (1) a terminal in either the

same or a different domain, or (2) another application program

in either the same or a different domain.

z/OS Communications Server:

SNA Programmer’s LU 6.2 Guide

SC31-8811 This document describes how to use the SNA LU 6.2 application

programming interface for host application programs. This

document applies to programs that use only LU 6.2 sessions or

that use LU 6.2 sessions along with other session types. (Only

LU 6.2 sessions are covered in this document.)

z/OS Communications Server:

SNA Programmer’s LU 6.2

Reference

SC31-8810 This document provides reference material for the SNA LU 6.2

programming interface for host application programs.

z/OS Communications Server:

CSM Guide

SC31-8808 This document describes how applications use the

communications storage manager.

Bibliography 389

Title Number Description

z/OS Communications Server:

CMIP Services and Topology

Agent Guide

SC31-8828 This document describes the Common Management Information

Protocol (CMIP) programming interface for application

programmers to use in coding CMIP application programs. The

document provides guide and reference information about CMIP

services and the SNA topology agent.

Diagnosis

 Title Number Description

z/OS Communications Server: IP

Diagnosis Guide

GC31-8782 This document explains how to diagnose TCP/IP problems and

how to determine whether a specific problem is in the TCP/IP

product code. It explains how to gather information for and

describe problems to the IBM Software Support Center.

z/OS Communications Server:

SNA Diagnosis Vol 1, Techniques

and Procedures and z/OS

Communications Server: SNA

Diagnosis Vol 2, FFST Dumps and

the VIT

GC31-6850

GC31-6851

These documents help you identify an SNA problem, classify it,

and collect information about it before you call the IBM Support

Center. The information collected includes traces, dumps, and

other problem documentation.

z/OS Communications Server:

SNA Data Areas Volume 1 and

z/OS Communications Server:

SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to

read an SNA dump. They are intended for IBM programming

service representatives and customer personnel who are

diagnosing problems with SNA.

Messages and codes

 Title Number Description

z/OS Communications Server:

SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, ISU, IUT, IVT, and

USS messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server: IP

Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server: IP

Messages Volume 2 (EZB, EZD)

SC31-8784 This volume contains TCP/IP messages beginning with EZB or

EZD.

z/OS Communications Server: IP

Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server: IP

Messages Volume 4 (EZZ, SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ and

SNM.

z/OS Communications Server: IP

and SNA Codes

SC31-8791 This document describes codes and other information that

appear in z/OS Communications Server messages.

APPC Application Suite

 Title Number Description

z/OS Communications Server:

APPC Application Suite User’s

Guide

SC31-8809 This documents the end-user interface (concepts, commands,

and messages) for the AFTP, ANAME, and APING facilities of

the APPC application suite. Although its primary audience is the

end user, administrators and application programmers may also

find it useful.

390 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Title Number Description

z/OS Communications Server:

APPC Application Suite

Administration

SC31-8835 This document contains the information that administrators

need to configure the APPC application suite and to manage the

APING, ANAME, AFTP, and A3270 servers.

z/OS Communications Server:

APPC Application Suite

Programming

SC31-8834 This document provides the information application

programmers need to add the functions of the AFTP and

ANAME APIs to their application programs.

Bibliography 391

392 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Index

A
abort association string 137

accessibility 373

ACF strings, syntax
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 138

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 133

ACF.SubscribeMess 133

ACF.SubscribeRsp 133

ACF.SubscribeState 133

ACF.UnSubscribe 133

ACF. strings
description 133

ending associations 137

getting association information 138

registering an application entity 135

starting associations 136

subscribing to association information 133

unsubscribing to association information 133

ACF.Abort 137

ACF.Associate 136

ACF.AssociateRsp 136

ACF.GetAssociationInfo 138

ACF.RegisterAE 135

ACF.RegisterRsp 135

ACF.Release 137

ACF.Subscribe 133

ACF.SubscribeMess 133

ACF.SubscribeRsp 133

ACF.SubscribeState 133

ACF.UnSubscribe 133

actions, OSI
collecting information with ACTION

description 163

initial data 166

merging updates 168

request 163

response 164

termination 169

update data 167

description 159

operations specifying with CMIP verbs
ACTION operation 160

CANCEL-GET operation 160

DELETE operation 160

description 159

EVENT-REPORT 160

GET operation 159

other operations 160

SET operation 160

types of CMIP responses
ACTION ROIV, responding to 162

CANCEL-GET, responding to 162

DELETE messages 162

description 161

EVENT-REPORT messages 162

actions, OSI (continued)
types of CMIP responses (continued)

GET ROIV, responding to 162

ROER message 161

ROIV message 161

RORS message 161

SET messages 162

agent, introduction to VTAM topology 149

allomorphs array parameter
MIBSendRegister 80

allomorphs count parameter
MIBSendRegister 80

API functions
error messages 54

overview 53

table of 53

API functions, CMIP services
application program characteristics 44

common storage area (CSA) interface 41

CSA versus data space 43

data space interface 41

message formatting for API 45

API header 45

parameters, API header 46

string header 48

types of string messages 48

overview 41

API functions, details
coding, general 53

completion information, general 54

descriptions, general 53

synchronous and asynchronous 55

API level parameter
MIBConnect 56

api_version parameter
API header 47

application ACB name parameter
MIBConnect 57

application program interface, CMIP0
application program characteristics 44

common storage area (CSA) interface 41

CSA versus data space 43

data space interface 41

message formatting for API 45

API header 45

parameters, API header 46

string header 48

types of string messages 48

overview 41

application program, sample CMIP 19

application-to-application security
associationKey attribute 143

description 143

directory definition file 143

ending associations 144

establishing 143

figure 144

securityInfo attribute 144

argument parameter
MIBSendCmipRequest 70

MIBSendCmipResponse 74

© Copyright IBM Corp. 1995, 2005 393

argument type parameter
MIBSendCmipRequest 70

MIBSendCmipResponse 73

ASN.1 syntax for ACF strings
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 138

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 133

ACF.SubscribeMess 133

ACF.SubscribeRsp 133

ACF.SubscribeState 133

ACF.UnSubscribe 133

ASN.1 syntax for CMIP strings 121

ASN.1 syntax for request strings 122

associate response string 136

associate string 136

association security
associationKey attribute 143

description 143

directory definition file 143

ending associations 144

establishing 143

figure 144

securityInfo attribute 144

asynchronous registration function
declarations 79

example in application program 81

parameters 80

purpose 79

return codes 80

B
basic interface 41

building CMIP strings
constructed ASN.1 types

description 112

SEQUENCE 113

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

decision types
ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

description 101

ENUMERATED 103

INTEGER 102

building CMIP strings (continued)
primitive ASN.1 data types (continued)

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

C
capability flags parameter

MIBSendRegister 80

classes, VTAM resources and object
description 151

naming objects 152

object classes 151

object states 155

resources to OSI object classes, mapping 152

VTAM status to OSI states, mapping
for VTAM resources with VTAM status 156

for VTAM resources without VTAM status 158

CLOSE ACB error value parameter
MIBDisconnect 67

CMIP API, function details
coding, general 53

completion information, general 54

descriptions, general 53

synchronous and asynchronous 55

CMIP application program, sample 19

CMIP messages, types of 121

CMIP operations
collecting information with ACTION

description 163

initial data 166

merging updates 168

request 163

response 164

termination 169

update data 167

description 159

operations specifying with CMIP verbs
ACTION operation 160

CANCEL-GET operation 160

DELETE operation 160

description 159

EVENT-REPORT 160

GET operation 159

other operations 160

SET operation 160

types of CMIP responses
ACTION ROIV, responding to 162

CANCEL-GET, responding to 162

DELETE messages 162

description 161

EVENT-REPORT messages 162

GET ROIV, responding to 162

ROER message 161

ROIV message 161

RORS message 161

SET messages 162

CMIP request function
declarations 70

example in application program 72

parameters 70

purpose 70

return codes 71

394 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP response function
declarations 73

example in application program 75

parameters 73

purpose 73

return codes 74

CMIP services
associations, managing 9

create handlers 13

events, filtering 7

events, routing 7

manager applications, special considerations 13

objects, locating 6

objects, registering 6

overview 5

parameters, CMIP 11

PDUs, managing 10

requirements for application programs 11

scoped requests, replicating 7

security, providing 9

subtree managers 12

traffic, coordinating 7

verbs, CMIP 11

CMIP services API functions
application program characteristics 44

coding, general 53

common storage area (CSA) interface 41

completion information, general 54

CSA versus data space 43

data space interface 41

descriptions, general 53

error messages 54

message formatting for API 45

API header 45

parameters, API header 46

string header 48

types of string messages 48

overview 41, 53

synchronous and asynchronous 55

table of 53

CMIP services to CMIP services security 143

CMIP strings, building
constructed ASN.1 types

description 112

SEQUENCE 113

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

decision types
ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

CMIP strings, building (continued)
primitive ASN.1 data types (continued)

description 101

ENUMERATED 103

INTEGER 102

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

CMIP strings, examples 121

Common Management Information Protocol (CMIP) Services
associations, managing 9

create handlers 13

events, filtering 7

events, routing 7

manager applications, special considerations 13

objects, locating 6

objects, registering 6

overview 5

parameters, CMIP 11

PDUs, managing 10

requirements for application programs 11

scoped requests, replicating 7

security, providing 9

subtree managers 12

traffic, coordinating 7

verbs, CMIP 11

common storage area (CSA) interface 41

common storage area versus data space 43

Communications Server for z/OS, online information xx

comparison between
ASN1, definition 4

basic encoding rules (BER) 5

CMIP services and local applications 4

CMIP services and remote applications 5

confirmation message
destination and source table 48

confirmation strings, examples 122

connect identifier parameter
API header 48

connection function
declarations 56

example in application program 65

parameters 56

purpose 56

return codes 63

connection options parameter
MIBConnect 63

constructing CMIP strings
constructed ASN.1 types

description 112

SEQUENCE 113

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

decision types
ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

Index 395

constructing CMIP strings (continued)
formatting data for CMIP services (continued)

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

description 101

ENUMERATED 103

INTEGER 102

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

create handlers array parameter
MIBSendRegister 80

create handlers count parameter
MIBSendRegister 80

creating CMIP strings
constructed ASN.1 types

description 112

SEQUENCE 113

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

decision types
ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

description 101

ENUMERATED 103

INTEGER 102

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

CSA interface 41

CSA versus data space 43

D
data for specific resources

data, requesting specific resource (GET)
data 223

description 219

example 223

overview 219

data for specific resources (continued)
data, requesting specific resource (GET) (continued)

request 219

response 222

data, requesting specific resource (logicalUnitIndex)
action request 224

action termination 226

initial data 225

overview 224

snapshot data 226

snapshot example 227

data space interface 41

data space vector length parameter
MIBConnect 62

data space vector parameter
MIBConnect 62

data space versus common storage area 41, 43

definition file, directory 143

deregistration function
declarations 77

example in application program 78

parameters 77

purpose 77

return codes 77

DES-based security 143

description, VTAM topology agent 149

destination association handle parameter
MIBSendCmipResponse 74

MIBSendResponse 85

destination parameter
MIBSendCmipRequest 70

destination type parameter
MIBSendCmipRequest 70

directory definition file 143

disability 373

disconnection function
declarations 67

example in application program 69

parameters 67

purpose 67

return codes 68

distinguished name parameter
MIBSendDeleteRegistration 77

MIBSendRegister 80

DNS, online information xxi

E
end association string 137

examples of CMIP strings 121

examples of request strings 122

exit routine, read queue
common storage area, for

description 88

length of string 89

parameter list 89

registers upon entry 88

registers upon termination 89

return code 88, 89

string header, address 89

data spaces, for
description 89

parameter list 90

reason code 89, 90

registers upon entry 90

registers upon termination 90

description 87

396 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

F
function details, CMIP API

coding, general 53

completion information, general 54

descriptions, general 53

synchronous and asynchronous 55

functions, CMIP API
application program characteristics 44

common storage area (CSA) interface 41

CSA versus data space 43

data space interface 41

error messages 54

message formatting for API 45

API header 45

parameters, API header 46

string header 48

types of string messages 48

overview 41, 53

table of 53

G
get association information string 138

H
how VTAM-specific requests and responses are used

ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 139

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 135

ACF.SubscribeMess 135

ACF.SubscribeRsp 135

ACF.SubscribeState 135

ACF.UnSubscribe 135

description 133

I
IBM Software Support Center, contacting xvii

indication message
destination and source table 48

indication strings, examples 122

information APARs for IP-related documents 369

information APARs for non- document information 370

information APARs for SNA-related documents 370

information for specific resources
data, requesting specific resource (GET)

data 223

description 219

example 223

overview 219

request 219

response 222

data, requesting specific resource (logicalUnitIndex)
action request 224

action termination 226

initial data 225

overview 224

snapshot data 226

snapshot example 227

interface, CSA versus data space 43

interface, storage 41

Internet, finding z/OS information online xx

invoke identifier
MIBSendCmipResponse 73

MIBSendResponse 85

invoke identifier parameter
API header 48

K
keyboard 373

L
last in chain parameter

MIBSendCmipResponse 73

license, patent, and copyright information 375

link identifier parameter
MIBConnect 56

MIBDisconnect 67

MIBSendCmipRequest 70

MIBSendCmipResponse 73

MIBSendDeleteRegistration 77

MIBSendRegister 80

MIBSendRequest 83

MIBSendResponse 85

local identifier length parameter
MIBConnect 63

local identifier parameter
MIBSendCmipRequest 70

MIBSendCmipResponse 74

MIBSendDeleteRegistration 77

MIBSendRegister 80

MIBSendRequest 83

MIBSendResponse 85

local identifiers
API header 48

LookAt message retrieval tool xxi

M
maximum outstanding invoke identifiers parameter

MIBConnect 56

message parameter
MIBSendRequest 83

MIBSendResponse 85

message retrieval tool, LookAt xxi

message types 121

MIB asynchronous registration function
declarations 79

example in application program 81

parameters 80

purpose 79

return codes 80

MIB queue request function
declarations 83

example in application program 84

parameters 83

purpose 83

return codes 83

MIB queue response function
declarations 85

example in application program 86

parameters 85

purpose 85

Index 397

MIB queue response function (continued)
return codes 85

MIB. strings
description 133

ending associations 137

getting association information 138

registering an application entity 135

starting associations 136

subscribing to association information 133

unsubscribing to association information 133

MIBConnect function
declarations 56

example in application program 65

parameters 56

purpose 56

return codes 63

MIBDisconnect function
declarations 67

example in application program 69

parameters 67

purpose 67

return codes 68

MIBSendCmipRequest function
declarations 70

example in application program 72

parameters 70

purpose 70

return codes 71

MIBSendCmipResponse function
declarations 73

example in application program 75

parameters 73

purpose 73

return codes 74

MIBSendDeleteRegistration function
declarations 77

example in application program 78

parameters 77

purpose 77

return codes 77

MIBSendRegister function
declarations 79

example in application program 81

parameters 80

purpose 79

return codes 80

MIBSendRequest function
declarations 83

example in application program 84

parameters 83

purpose 83

return codes 83

MIBSendResponse function
declarations 85

example in application program 86

parameters 85

purpose 85

return codes 85

monitoring VTAM topology
data, monitoring LU

action request 205

action termination 208

description 204

initial data 205

overview 204

snapshot data 208

snapshot example 209

monitoring VTAM topology (continued)
data, monitoring LU (continued)

update data response 206

data, monitoring network
action request 171

action termination 173

description 171

initial data 172

overview 171

snapshot data for APPN 174

snapshot data for subarea 175

snapshot example 177

update data response 172

resources, monitoring through reports
creation of 213

data, event-report 214

description 212

environment 213

example 216

manager, reporting to 214

overview 212

topology, monitoring local
action request 185

action termination 188

description 183

initial data 186

overview 183

snapshot data 190

snapshot example 195

update data response 187

msg_type parameter
API header 46

N
name binding object identifier parameter

MIBSendRegister 80

name type parameter
MIBSendRegister 80

network and resource monitoring
data, monitoring LU

action request 205

action termination 208

description 204

initial data 205

overview 204

snapshot data 208

snapshot example 209

update data response 206

data, monitoring network
action request 171

action termination 173

description 171

initial data 172

overview 171

snapshot data for APPN 174

snapshot data for subarea 175

snapshot example 177

update data response 172

resources, monitoring through reports
creation of 213

data, event-report 214

description 212

environment 213

example 216

manager, reporting to 214

overview 212

398 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

network and resource monitoring (continued)
topology, monitoring local

action request 185

action termination 188

description 183

initial data 186

overview 183

snapshot data 190

snapshot example 195

update data response 187

number of local identifiers parameter
API header 48

O
object class parameter

MIBSendRegister 80

object classes and VTAM resources
description 151

naming objects 152

object classes 151

object states 155

resources to OSI object classes, mapping 152

VTAM status to OSI states, mapping
for VTAM resources with VTAM status 156

for VTAM resources without VTAM status 158

object orientation
class, definition 4

description 3

inheritance, definition 4

instance, definition 4

object, definition 4

object-oriented view
class, definition 4

description 3

inheritance, definition 4

instance, definition 4

object, definition 4

OO
class, definition 4

description 3

inheritance, definition 4

instance, definition 4

object, definition 4

OPEN ACB error value parameter
MIBConnect 58

operations, OSI
collecting information with ACTION

description 163

initial data 166

merging updates 168

request 163

response 164

termination 169

update data 167

description 159

operations specifying with CMIP verbs
ACTION operation 160

CANCEL-GET operation 160

DELETE operation 160

description 159

EVENT-REPORT 160

GET operation 159

other operations 160

SET operation 160

types of CMIP responses
ACTION ROIV, responding to 162

operations, OSI (continued)
types of CMIP responses (continued)

CANCEL-GET, responding to 162

DELETE messages 162

description 161

EVENT-REPORT messages 162

GET ROIV, responding to 162

ROER message 161

ROIV message 161

RORS message 161

SET messages 162

origin parameter
API header 47

OSI object classes
description 151

naming objects 152

object classes 151

object states 155

resources to OSI object classes, mapping 152

VTAM status to OSI states, mapping
for VTAM resources with VTAM status 156

for VTAM resources without VTAM status 158

OSI operations
collecting information with ACTION

description 163

initial data 166

merging updates 168

request 163

response 164

termination 169

update data 167

description 159

operations specifying with CMIP verbs
ACTION operation 160

CANCEL-GET operation 160

DELETE operation 160

description 159

EVENT-REPORT 160

GET operation 159

other operations 160

SET operation 160

types of CMIP responses
ACTION ROIV, responding to 162

CANCEL-GET, responding to 162

DELETE messages 162

description 161

EVENT-REPORT messages 162

GET ROIV, responding to 162

ROER message 161

ROIV message 161

RORS message 161

SET messages 162

overview, VTAM topology agent 149

P
password parameter

MIBConnect 62

PING, sample CMIP application 19

program-to-program security
associationKey attribute 143

description 143

directory definition file 143

ending associations 144

establishing 143

figure 144

securityInfo attribute 144

Index 399

program, sample CMIP application 19

purpose of VTAM-specific requests and responses
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 139

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 135

ACF.SubscribeMess 135

ACF.SubscribeRsp 135

ACF.SubscribeState 135

ACF.UnSubscribe 135

description 133

Q
queue request function

declarations 83

example in application program 84

parameters 83

purpose 83

return codes 83

queue response function
declarations 85

example in application program 86

parameters 85

purpose 85

return codes 85

R
read queue exit routine

common storage area, for
description 88

length of string 89

parameter list 89

registers upon entry 88

registers upon termination 89

return code 88, 89

string header, address 89

data spaces, for
description 89

parameter list 90

reason code 89, 90

registers upon entry 90

registers upon termination 90

description 87

read queue exit routine pointer parameter
MIBConnect 57

register application entity string 135

register response string 135

relationship between
ASN1, definition 4

basic encoding rules (BER) 5

CMIP services and local applications 4

CMIP services and remote applications 5

release association string 137

request function, CMIP
declarations 70

example in application program 72

parameters 70

purpose 70

return codes 71

request message
destination and source table 48

request strings, examples 122

requesting specific resource data
data, requesting specific resource (GET)

data 223

description 219

example 223

overview 219

request 219

response 222

data, requesting specific resource (logicalUnitIndex)
action request 224

action termination 226

initial data 225

overview 224

snapshot data 226

snapshot example 227

requests and responses, VTAM-specific
description 133

ending associations 137

getting association information 138

registering an application entity 135

starting associations 136

subscribing to association information 133

unsubscribing to association information 133

requests, scoped 7

requests, VTAM-specific, how used
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 139

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 135

ACF.SubscribeMess 135

ACF.SubscribeRsp 135

ACF.SubscribeState 135

ACF.UnSubscribe 135

description 133

resources and OSI object classes, VTAM
description 151

naming objects 152

object classes 151

object states 155

resources to OSI object classes, mapping 152

VTAM status to OSI states, mapping
for VTAM resources with VTAM status 156

for VTAM resources without VTAM status 158

resources, data for specific
data, requesting specific resource (GET)

data 223

description 219

example 223

overview 219

request 219

response 222

data, requesting specific resource (logicalUnitIndex)
action request 224

action termination 226

initial data 225

overview 224

snapshot data 226

snapshot example 227

response function, CMIP
declarations 73

400 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

response function, CMIP (continued)
example in application program 75

parameters 73

purpose 73

return codes 74

response function, MIB queue
declarations 85

example in application program 86

parameters 85

purpose 85

return codes 85

response message
destination and source table 48

response strings, examples 122

responses and requests, VTAM-specific
description 133

ending associations 137

getting association information 138

registering an application entity 135

starting associations 136

subscribing to association information 133

unsubscribing to association information 133

responses, VTAM-specific, how used
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 139

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 135

ACF.SubscribeMess 135

ACF.SubscribeRsp 135

ACF.SubscribeState 135

ACF.UnSubscribe 135

description 133

result code
API header 48

returned invoke identifier parameter
MIBSendCmipRequest 71

MIBSendCmipResponse 74

MIBSendDeleteRegistration 77

MIBSendRegister 80

MIBSendRequest 83

RFC (request for comments)
accessing online xx

list of 353

routine, read queue exit
common storage area, for

description 88

length of string 89

parameter list 89

registers upon entry 88

registers upon termination 89

return code 88, 89

string header, address 89

data spaces, for
description 89

parameter list 90

reason code 89, 90

registers upon entry 90

registers upon termination 90

description 87

rules for CMIP strings
constructed ASN.1 types

description 112

SEQUENCE 113

rules for CMIP strings (continued)
constructed ASN.1 types (continued)

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

decision types
ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

description 101

ENUMERATED 103

INTEGER 102

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

S
sample CMIP application program 19

samples of CMIP strings 121

scoped requests 7

secure associations
associationKey attribute 143

description 143

directory definition file 143

ending associations 144

establishing 143

figure 144

securityInfo attribute 144

security
associationKey attribute 143

description 143

directory definition file 143

ending associations 144

establishing 143

figure 144

securityInfo attribute 144

shortcut keys 373

SMAE name buffer parameter
MIBConnect 57

SMAE name buffer size parameter
MIBConnect 57

SNA protocol specifications 351

source parameter
MIBSendCmipRequest 70

MIBSendCmipResponse 74

MIBSendResponse 85

specific monitoring capabilities
data, monitoring LU

action request 205

Index 401

specific monitoring capabilities (continued)
data, monitoring LU (continued)

action termination 208

description 204

initial data 205

overview 204

snapshot data 208

snapshot example 209

update data response 206

data, monitoring network
action request 171

action termination 173

description 171

initial data 172

overview 171

snapshot data for APPN 174

snapshot data for subarea 175

snapshot example 177

update data response 172

resources, monitoring through reports
creation of 213

data, event-report 214

description 212

environment 213

example 216

manager, reporting to 214

overview 212

topology, monitoring local
action request 185

action termination 188

description 183

initial data 186

overview 183

snapshot data 190

snapshot example 195

update data response 187

specific requests and responses, VTAM-
description 133

ending associations 137

getting association information 138

registering an application entity 135

starting associations 136

subscribing to association information 133

unsubscribing to association information 133

specific resource data, requesting
data, requesting specific resource (GET)

data 223

description 219

example 223

overview 219

request 219

response 222

data, requesting specific resource (logicalUnitIndex)
action request 224

action termination 226

initial data 225

overview 224

snapshot data 226

snapshot example 227

standard CMIP strings, rules for
constructed ASN.1 types

description 112

SEQUENCE 113

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

standard CMIP strings, rules for (continued)
decision types

ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

description 101

ENUMERATED 103

INTEGER 102

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

storage, CSA versus data space 41, 43

strings, building CMIP
constructed ASN.1 types

description 112

SEQUENCE 113

SEQUENCE OF 114

SET 114

SET OF 114

create requests 129

decision types
ANY 117

ANY DEFINED BY 116

CHOICE 115

description 115

delete requests 130

description of 95

formatting data for CMIP services
ASN.1 value 97

constructed value 99

description 95

explicit value 97

hexadecimal BER 100

MIB variable 98

primitive ASN.1 data types
BIT STRING 105

BOOLEAN 101

character string 109

description 101

ENUMERATED 103

INTEGER 102

NULL 107

OBJECT IDENTIFIER 108

OCTET STRING 106

REAL 104

time type 112

strings, CMIP examples 121

strings, examples for request 122

subscribe message string 133

subscribe response string 133

subscribe state string 133

402 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

subscribe string 133

success parameter
MIBSendCmipResponse 73

syntax for CMIP strings 121

syntax for request strings 122

syntax of ACF strings
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 138

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 133

ACF.SubscribeMess 133

ACF.SubscribeRsp 133

ACF.SubscribeState 133

ACF.UnSubscribe 133

system object name buffer parameter
MIBConnect 58

system object name buffer size parameter
MIBConnect 58

system to system security 143

T
TCP/IP

online information xx

protocol specifications 353

timestamp parameter
API header 48

topology agent, introduction 149

topology monitoring, VTAM
data, monitoring LU

action request 205

action termination 208

description 204

initial data 205

overview 204

snapshot data 208

snapshot example 209

update data response 206

data, monitoring network
action request 171

action termination 173

description 171

initial data 172

overview 171

snapshot data for APPN 174

snapshot data for subarea 175

snapshot example 177

update data response 172

resources, monitoring through reports
creation of 213

data, event-report 214

description 212

environment 213

example 216

manager, reporting to 214

overview 212

topology, monitoring local
action request 185

action termination 188

description 183

initial data 186

overview 183

snapshot data 190

topology monitoring, VTAM (continued)
topology, monitoring local (continued)

snapshot example 195

update data response 187

TPEND routine pointer parameter
MIBConnect 57

trademark information 384

types of messages 121

U
unSubscribe string 133

use of VTAM-specific requests and responses
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 139

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 135

ACF.SubscribeMess 135

ACF.SubscribeRsp 135

ACF.SubscribeState 135

ACF.UnSubscribe 135

description 133

user data parameter
MIBConnect 58

V
VTAM release level parameter

MIBConnect 61

VTAM resources and OSI object classes
description 151

naming objects 152

object classes 151

object states 155

resources to OSI object classes, mapping 152

VTAM status to OSI states, mapping
for VTAM resources with VTAM status 156

for VTAM resources without VTAM status 158

VTAM topology agent introduction 149

VTAM topology monitoring
data, monitoring LU

action request 205

action termination 208

description 204

initial data 205

overview 204

snapshot data 208

snapshot example 209

update data response 206

data, monitoring network
action request 171

action termination 173

description 171

initial data 172

overview 171

snapshot data for APPN 174

snapshot data for subarea 175

snapshot example 177

update data response 172

resources, monitoring through reports
creation of 213

data, event-report 214

Index 403

VTAM topology monitoring (continued)
resources, monitoring through reports (continued)

description 212

environment 213

example 216

manager, reporting to 214

overview 212

topology, monitoring local
action request 185

action termination 188

description 183

initial data 186

overview 183

snapshot data 190

snapshot example 195

update data response 187

VTAM-specific requests and responses
description 133

ending associations 137

getting association information 138

registering an application entity 135

starting associations 136

subscribing to association information 133

unsubscribing to association information 133

VTAM-specific requests and responses, how used
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 139

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 135

ACF.SubscribeMess 135

ACF.SubscribeRsp 135

ACF.SubscribeState 135

ACF.UnSubscribe 135

description 133

VTAM-specific requests and responses, syntax
ACF.Abort 138

ACF.Associate 137

ACF.AssociateRsp 137

ACF.GetAssociationInfo 138

ACF.RegisterAE 136

ACF.RegisterRsp 136

ACF.Release 138

ACF.Subscribe 133

ACF.SubscribeMess 133

ACF.SubscribeRsp 133

ACF.SubscribeState 133

ACF.UnSubscribe 133

VTAM, online information xx

Z
z/OS, documentation library listing 387

z/OS, listing of documentation available 369

404 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

Communicating Your Comments to IBM

If you especially like or dislike anything about this document, please use one of

the methods listed below to send your comments to IBM. Whichever method you

choose, make sure you send your name, address, and telephone number if you

would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject

matter, or completeness of this document. However, the comments you send

should pertain to only the information in this manual and the way in which the

information is presented. To request additional publications, or to ask questions or

make comments about the functions of IBM products or systems, you should talk

to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or

distribute your comments in any way it believes appropriate without incurring any

obligation to you.

Please send your comments to us in either of the following ways:

v If you prefer to send comments by FAX, use this number: 1+919-254-4028

v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com.
v If you prefer to send comments by post, use this address:

International Business Machines Corporation

Attn: z/OS Communications Server Information Development

P.O. Box 12195, 3039 Cornwallis Road

Department AKCA, Building 501

Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:

v Title and publication number of this document

v Page number or topic to which your comment applies.

© Copyright IBM Corp. 1995, 2005 405

406 z/OS V1R7.0 Comm Svr: CMIP Services and Topology Agent Guide

����

Program Number: 5694–A01 and 5655–G52

Printed in USA

SC31-8828-03

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

z/
O

S
Co

m
m

un
ic

at
io

ns

Se

rv
er

z/
O

S
V

1R
7.0

Co

m
m

Sv

r:

C

M
IP

Se

rv
ic

es

an

d
To

po
lo

gy

A
ge

nt

G

ui
de

Ve
rs

io
n

1
R

el
ea

se

7

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology used in this document
	Clarification of notes

	Prerequisite and related information
	Required information
	Related information
	Softcopy information
	Other documents
	Redbooks
	Where to find related information on the Internet
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	How to send your comments

	Summary of changes
	Part 1. VTAM CMIP services
	Chapter 1. Introduction to Object Orientation and CMIP services
	Object-Oriented view of resources
	Relationship between CMIP services and local application programs
	Relationship between CMIP services and remote management systems
	Overview of CMIP services
	Locates objects
	Registers objects
	Coordinates traffic
	Replicates scoped requests
	Filters and routes events
	Provides security
	Creates and ends associations
	Creating associations
	Ending associations

	Manages associations
	Manages PDUs
	Supports all CMIP verbs and most CMIP parameters

	Requirements for application programs
	Types of application programs
	Basic application programs
	Subtree managers
	Create handlers
	Special considerations for manager application programs
	Special considerations for topology manager application programs
	Patterns of EFDs that CMIP services recognizes
	Specific object classes that CMIP services recognizes

	CMIP error handling
	General error handling
	Errors found during outbound CMIP processing
	Errors found during inbound CMIP processing

	CMIP sequencing for separate CMIP operations

	Chapter 2. Sample CMIP application program
	ACYCMS1C source file
	ACYCMS2A source file
	ACYCMS3A source file
	ACYCMS4A source file
	ACYCMS5A source file
	ACYCMS6A source file
	ACYCMS7A source file

	Chapter 3. Overview of CMIP services API functions
	Decisions to make before coding
	Common storage area storage or data space storage?
	Common storage area interface
	Data space interface
	Advantages of CSA interface and data space interface

	What form of distinguished name?
	What type of application program—manager or agent?

	Requirements for CMIP application programs
	Format of API messages
	Description and example of the API header
	API header fields
	Description and example of the string
	Rules for the source and destination fields in the string

	Chapter 4. CMIP services API function syntax and operands
	Overview of API functions
	How the functions are coded
	How the functions are described
	Completion information
	Synchronous and asychronous functions
	MIBConnect—MIB connection function
	MIBDisconnect—MIB disconnection function
	MIBSendCmipRequest—CMIP request function
	MIBSendCmipResponse—CMIP response function
	MIBSendDeleteRegistration—Deregistration function
	MIBSendRegister—MIB asynchronous registration function
	MIBSendRequest—MIB queue request function
	MIBSendResponse—MIB queue response function

	Chapter 5. Read queue exit routine
	Read queue exit routine for the CSA interface
	VTAM reason codes (for CSA)
	Registers upon entry (for CSA)
	Registers upon termination (for CSA)
	Parameter list (for CSA)

	Read queue exit routine for data space storage
	VTAM reason codes (for data space)
	Registers upon entry (for data space)
	Registers upon termination (for data space)
	Parameter list (for data space)

	Chapter 6. Dequeue and release routines for data space storage
	Format of data on data space
	Dequeueing a buffer with the dequeue routine
	Input to the dequeue routine
	Output for dequeue routine

	Releasing a buffer with the release routine
	Input to the release routine
	Output to the release routine
	Abnormal exits

	Chapter 7. Rules for constructing standard CMIP strings
	Overview
	How application programs format data to be sent to CMIP services
	Explicit value format
	ASN.1 value format
	MIB variable format
	Constructed value format
	Hexadecimal BER format

	Primitive ASN.1 data types
	BOOLEAN type
	How an application program sends a BOOLEAN value to CMIP services
	How CMIP services sends a BOOLEAN value to an application program

	INTEGER type
	How an application program sends an INTEGER value to CMIP services
	How CMIP services sends an INTEGER value to an application program

	ENUMERATED type
	How an application program sends an ENUMERATED value to CMIP services
	How CMIP services sends an ENUMERATED value to an application program

	REAL type
	How an application program sends a REAL value to CMIP services
	How CMIP services sends a REAL value to an application program

	BIT STRING type
	How an application program sends a BIT STRING to CMIP services
	How an application program specifies a BIT STRING value
	How CMIP services sends a BIT STRING to an application program

	OCTET STRING type
	How an application program sends an OCTET STRING to CMIP services
	How an application program specifies an OCTET STRING
	How CMIP services sends an OCTET STRING to an application program

	NULL type
	How an application program sends a NULL value to CMIP services
	How an application program specifies a NULL value
	How CMIP services sends a NULL value to an application program

	OBJECT IDENTIFIER type
	How an application program sends an OBJECT IDENTIFIER to CMIP services
	How an application program specifies an OBJECT IDENTIFIER value
	How CMIP services sends an OBJECT IDENTIFIER to an application program

	Character string types
	How an application program sends a character string to CMIP services
	Valid characters for character strings
	Valid characters for NumericString type
	Valid characters for PrintableString type
	Valid characters for GraphicString and ISO646String
	How CMIP services sends a character string to an application program

	Time types
	How an application program sends a TIME value to CMIP services
	How CMIP services sends a TIME value to an application program

	Constructed ASN.1 types
	How CMIP services sends a constructed type to an application program
	SEQUENCE
	SET
	SET OF and SEQUENCE OF types

	Decision types
	CHOICE types
	How an application program sends a CHOICE to CMIP services
	How an application program specifies CHOICE values
	How CMIP services sends a CHOICE to an application program

	ANY DEFINED BY types
	How an application program sends an ANY DEFINED BY value to CMIP services
	How an application program specifies ANY DEFINED BY values

	ANY types
	How an application program sends an ANY value to CMIP services
	How CMIP services sends an ANY value to an application program

	Additional examples of how application programs send data

	Chapter 8. Examples of standard CMIP strings
	Requests and indications
	GET request—syntax
	GET request—example request string
	GET request—corresponding indication
	ACTION request—syntax
	ACTION request—example request string
	ACTION request—corresponding indication

	Responses and confirmations
	GET response—syntax
	GET response—example response string
	GET response—corresponding confirmation
	CREATE response—syntax
	CREATE response—example response string
	CREATE response—corresponding confirmation

	Chapter 9. Create and delete requests
	Create requests
	Creating the new object requested on the create request
	Rejecting the create request
	Creating an object different from object on the create request

	Delete requests
	Deleting the object requested on the delete request
	Rejecting the delete request

	Chapter 10. VTAM-specific requests and responses
	Subscribing to association information
	Syntax for the subscription strings
	Examples of subscription strings
	How the subscription strings are used

	Registering an application entity
	Syntax of the registration strings
	Examples of RegisterAE strings
	How the registration strings are used

	Starting associations
	Syntax of the associate strings
	Examples of the associate strings
	How the associate strings are used

	Ending associations
	Syntax of the ACF.Release and ACF.Abort strings
	Examples of the ACF.Release and ACF.Abort strings
	How the ACF.Release and ACF.Abort strings are used

	Getting association information
	Syntax of the GetAssociationInfo string
	Examples of the GetAssociationInfo string
	How the GetAssociationInfo string is used

	Creating a dedicated association
	Requests and responses with the MIB prefix
	MIB.GeneralRequest, MIB.GeneralResponse, and MIB.GeneralError
	MIB.ServiceError
	MIB.ServiceAccept
	MIB.RegisterAccept

	Chapter 11. Application-program-to-application-program security
	Part 2. VTAM topology agent
	Chapter 12. Introduction to VTAM topology agent
	Chapter 13. OSI object classes and VTAM resources
	OSI object classes
	Mapping VTAM resources to OSI object classes
	Naming the objects
	OSI object states
	Mapping VTAM status to OSI states
	OSI states for VTAM resources with VTAM status
	OSI states for VTAM resources without VTAM native status

	Chapter 14. OSI operations
	Specifying OSI operations with CMIP verbs
	GET
	CANCEL-GET
	ACTION
	SET
	DELETE
	Other operations

	Responding to CMIP requests
	Responding to GET ROIV messages
	Responding to CANCEL-GET messages
	Responding to ACTION ROIV messages
	EVENT-REPORT, SET, and DELETE messages

	Monitoring resources with the ACTION(snapshot) operation
	ACTION(snapshot) request
	ACTION(snapshot) response
	ACTION(snapshot) initial data
	ACTION(snapshot) update data
	ACTION(snapshot) update merging
	ACTION(snapshot) termination

	Chapter 15. VTAM topology monitoring
	Requesting and monitoring network data (snaNetwork)
	Overview
	Action request
	Initial data response
	Update data response
	Action termination
	snaNetwork snapshot data (APPN data)
	snaNetwork snapshot data (subarea data)
	snaNetwork snapshot example

	Requesting and monitoring local topology (snaLocalTopo)
	Overview
	Action request
	Initial data response
	Update data response
	Action termination
	snaLocalTopo snapshot data
	snaLocalTopo snapshot example

	Requesting and monitoring LU data (luCollection)
	Overview
	Action request
	Initial data response
	Update data response
	Action termination
	luCollection snapshot data
	luCollection (PU) snapshot example

	Monitoring resources through event reports
	Overview
	Management of the event reporting environment
	Creation of the event forwarding discriminator
	Reporting events to the manager application program
	Event report data
	Event report example

	Chapter 16. Requesting specific resource data
	Requesting specific resource data (GET)
	Overview
	GET request
	Network-qualified names and GET requests
	GET response
	GET data
	GET data example

	Requesting specific resource data (logicalUnitIndex)
	Overview
	Action request
	Initial data response
	Action termination
	logicalUnitIndex snapshot data
	logicalUnitIndex snapshot example

	Appendix A. C language header file (ACYAPHDH)
	Appendix B. ASN.1 specification of the basic CMIP strings
	Appendix C. Error codes sent by CMIP services
	MIB.ServiceError error codes
	CMER VIT entry error codes

	Appendix D. VTAM CMIP services compliance with related standards and profiles
	ISO standards documents
	ISO 9596-1 CMIP—Common Management Information Protocol
	(ISO 10164-5) OSI systems management part 5: event report function
	ISO 8650 ACSE—Association Control Service Element
	ISO 8823 presentation layer
	ISO 8825 BER—Basic Encoding Rules (BER)

	ISO standards documents
	DISP 11183-1, AOM 10
	DISP 11183-3, AOM 12
	AOM221—general event report management

	Appendix E. VTAM topology agent object and attribute tables
	VTAM-supported objects for snapshot operations
	Naming attributes for snapshot objects
	VTAM-supported objects for snapshot responses
	VTAM-supported attributes for snapshot responses
	VTAM-supported objects for GET operation
	VTAM-supported attributes for GET operation

	Appendix F. VTAM topology agent attributes definition
	abmSupported
	adapterAddresses
	adapterNumbers
	adjacentLinkStationAddress
	adjacentNodeName
	adjacentNodeType
	administrativeState
	allomorphs
	appnNodeCapabilities
	appnTGcapabilities
	attachedCircuitList
	availabilityStatus
	cdrscRealLUname
	connectionID
	connectionType
	cp-cpSessionSupport
	definitionGroupName
	dependencies
	dlcName
	dlurList
	dlurLocalLsAddress
	dlurName
	endpointForArc
	erList
	extendedAppnNodeCapabilities
	functionID
	gatewayNode
	gatewaySSCP
	interconnectedNetids
	limitedResource
	limitedResourceTimeout
	lineType
	linkName
	linkStationRole
	luGroupMembers
	luGroupName
	luGroupSize
	luSecondName
	maxBTUsize
	nameBinding
	nativeStatus
	nlrResidentNodePointer
	nnServerPointer
	nonLocalResourceName
	nonLocalResourceType
	objectClass
	opEquipmentList
	opNetworkName
	operationalState
	packages
	partnerConnection
	portId
	proceduralStatus
	puName
	receiveWindowSize
	realSSCPname
	registeredBy
	relatedAdapter
	residentNodePointer
	resourceSequenceNumber
	routeAdditionResistance
	sendWindowSize
	snaNodeName
	softwareList
	subareaAddress
	subareaLimit
	supportedResources
	sysplexInfo
	tn3270ClientDnsName
	tn3270ClientIpAddress
	tn3270ClientPortNumber
	transmissionGroupNumber
	underlyingConnectionNames
	userLabel
	unknownStatus
	usageState

	Appendix G. VTAMTOPO filtering option reporting
	Appendix H. Architectural specifications
	Appendix I. Related protocol specifications (RFCs)
	Internet drafts

	Appendix J. Information APARs
	Information APARs for IP documents
	Information APARs for SNA documents
	Other information APARs

	Appendix K. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks

	Bibliography
	z/OS Communications Server information
	z/OS Communications Server library
	Planning
	Resource definition, configuration, and tuning
	Operation
	Customization
	Writing application programs
	Diagnosis
	Messages and codes
	APPC Application Suite

	Index
	Communicating Your Comments to IBM

